Bounds on Gromov hyperbolicity constant in graphs

If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. $\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $ In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.

[1]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[2]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[3]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[4]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[5]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[6]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[7]  Florian Pfender,et al.  Pancyclicity in claw-free graphs , 2002, Discret. Math..

[8]  J. Heinonen,et al.  Uniformizing Gromov hyperbolic spaces , 2001 .

[9]  José M. Rodríguez,et al.  Uniformly Separated Sets and Gromov Hyperbolicity of Domains with the Quasihyperbolic Metric , 2011 .

[10]  José M. Rodríguez,et al.  Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains , 2010 .

[11]  Alexander B. Kharazishvili The problem of extending partial functions , 2009 .

[12]  José M. Rodríguez,et al.  Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics , 2008, 0806.0097.

[13]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[14]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[15]  J. Rodríguez STABILITY OF GROMOV HYPERBOLICITY , 2009 .

[16]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[17]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[18]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[19]  Sergio Bermudo,et al.  Mathematical Properties of Gromov Hyperbolic Graphs , 2010 .

[20]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[21]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Riemann Surfaces , 2007 .

[22]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[23]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[24]  Cristina Dalfó Simó,et al.  A differential approach for bounding the index of graphs under perturbations , 2011 .

[25]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[26]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[27]  P. Hästö Gromov hyperbolicity of the jG and jG metrics , 2005 .

[28]  Y. Cho,et al.  Discrete Groups , 1994 .

[29]  Masahiko Kanai,et al.  Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .

[30]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[31]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[32]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[33]  S. Buckley,et al.  Geometric characterizations of Gromov hyperbolicity , 2003 .

[34]  Edmond A. Jonckheere,et al.  Scaled Gromov hyperbolic graphs , 2008, J. Graph Theory.

[35]  Yuan Yi On the general Dedekind sums and its reciprocity formula , 2010 .

[36]  Florian Pfender A note on cycle spectra of line graphs , 2009, Discret. Math..