Scalable Web Technology for the Internet of Things

The Internet of Things (IoT) can be considered as a modern manifestation of Mark Weiser’s classic vision of ubiquitous computing where tiny networked computers become part of everyday objects interweaving the virtual world and the physical world. The concept of the IoT originated some 15 years ago from linking real-world artifacts to virtual counterparts through radio-frequency identification (RFID) tags. More recently, environments have become ‘smart’ by augmenting physical objects with sensing or actuation capabilities and networking them with digital services. The ongoing standardization of Internet protocols for such IoT devices enables the seamless integration of smart things into the Internet. This trend is expected to eventually result in hundreds of billions of connected devices that need to be programmed, managed, and maintained. It has been shown that Web technology can significantly ease this process by providing well-known patterns and tools for developers and users. The existing solutions are, however, often too heavyweight for highly resource-constrained IoT devices. Indeed, most connected devices are expected to remain resource-constrained, as progress in technology witnessed by Moore’s Law is primarily leveraged to minimize dimensions, power consumption, and unit costs. This dissertation presents a comprehensive solution for the seamless integration of highly resource-constrained IoT systems into the World Wide Web. Our thesis is that existing protocols and programming models do not effectually meet the needs of the IoT. We identify two key challenges for the vision to succeed: application-layer interoperability and improved usability for both developers and users. Both requirements can be met by an approach that amalgamates results from the field of Wireless Sensor Networks and the World Wide Web. This leads to the research questions (i) how to scale Web technology down to resource-constrained devices, (ii) how to scale it up to hundreds of billions of devices, and (iii) how to use it to improve the usability of the tiny networked computers. Our work addresses the resulting challenges with the following contributions: Being actively involved in the design and standardization of the Constrained Application Protocol (CoAP) within the Internet Engineering Task Force (IETF), we (i) evaluate the new Web protocol

[1]  Vlad Trifa,et al.  The COMPOSE API for the internet of things , 2014, WWW.

[2]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[3]  Adam Dunkels,et al.  A Low-Power CoAP for Contiki , 2011, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.

[4]  Luis Rodero-Merino,et al.  Finding your Way in the Fog: Towards a Comprehensive Definition of Fog Computing , 2014, CCRV.

[5]  Karl Aberer,et al.  A middleware for fast and flexible sensor network deployment , 2006, VLDB.

[6]  Mani B. Srivastava,et al.  Design and implementation of a framework for efficient and programmable sensor networks , 2003, MobiSys '03.

[7]  Andrea Monacchi,et al.  Integrating households into the smart grid , 2013, 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES).

[8]  Willy Zwaenepoel,et al.  Flash: An efficient and portable Web server , 1999, USENIX Annual Technical Conference, General Track.

[9]  Saikat Guha,et al.  Characterization and measurement of TCP traversal through NATs and firewalls , 2005, IMC '05.

[10]  Stefano Chessa,et al.  Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards , 2007, Comput. Commun..

[11]  Gilles Grimaud,et al.  The Web of Things: Interconnecting Devices with High Usability and Performance , 2009, 2009 International Conference on Embedded Software and Systems.

[12]  Koen Langendoen,et al.  Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[13]  More than 50 billion connected devices , 2011 .

[14]  David E. Culler,et al.  The dynamic behavior of a data dissemination protocol for network programming at scale , 2004, SenSys '04.

[15]  Burkhard Stiller,et al.  Retrieving Monitoring and Accounting Information from Constrained Devices in Internet-of-Things Applications , 2013, AIMS.

[16]  Ingrid Moerman,et al.  Leveraging upon standards to build the Internet of Things , 2012, 2012 19th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT).

[17]  Matt Welsh,et al.  Deploying a wireless sensor network on an active volcano , 2006, IEEE Internet Computing.

[18]  David E. Culler,et al.  sMAP: a simple measurement and actuation profile for physical information , 2010, SenSys '10.

[19]  Kerry Lynn,et al.  Transmission of IPv6 over MS/TP Networks , 2011 .

[20]  Michele Zorzi,et al.  Web Services for the Internet of Things through CoAP and EXI , 2011, 2011 IEEE International Conference on Communications Workshops (ICC).

[21]  Eduardo Tovar,et al.  Nano-CF: A coordination framework for macro-programming in Wireless Sensor Networks , 2011, 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[22]  Kay Römer,et al.  The design space of wireless sensor networks , 2004, IEEE Wireless Communications.

[23]  Vern Paxson,et al.  Computing TCP's Retransmission Timer , 2000, RFC.

[24]  Janne Riihijärvi,et al.  NanoIP: the zen of embedded networking , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[25]  Philip Levis,et al.  Collection tree protocol , 2009, SenSys '09.

[26]  Adam Dunkels,et al.  Demo: Snap: rapid sensornet deployment with a sensornet appstore , 2011, SenSys.

[27]  Adam Dunkels,et al.  Run-time dynamic linking for reprogramming wireless sensor networks , 2006, SenSys '06.

[28]  David E. Culler,et al.  Design and implementation of a high-fidelity AC metering network , 2009, 2009 International Conference on Information Processing in Sensor Networks.

[29]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[30]  Thiemo Voigt,et al.  Lithe: Lightweight Secure CoAP for the Internet of Things , 2013, IEEE Sensors Journal.

[31]  Hannes Tschofenig,et al.  Internet Engineering Task Force (ietf) Using Raw Public Keys in Transport Layer Security (tls) and Datagram Transport Layer Security (dtls) , 2022 .

[32]  Bogdan M. Wilamowski,et al.  The Transmission Control Protocol , 2005, The Industrial Information Technology Handbook.

[33]  David E. Culler,et al.  SEDA: an architecture for well-conditioned, scalable internet services , 2001, SOSP.

[34]  August Betzler,et al.  CoAP Simple Congestion Control/Advanced , 2016 .

[35]  David D. Clark,et al.  Rethinking the design of the Internet , 2001, ACM Trans. Internet Techn..

[36]  Luca Veltri,et al.  IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure Services in IoT Scenarios , 2015, IEEE Sensors Journal.

[37]  Vlad Trifa,et al.  Towards physical mashups in the Web of Things , 2009, 2009 Sixth International Conference on Networked Sensing Systems (INSS).

[38]  Adam Dunkels,et al.  Efficient application integration in IP-based sensor networks , 2009, BuildSys '09.

[39]  Craig Partridge,et al.  Improving round-trip time estimates in reliable transport protocols , 1991, TOCS.

[40]  Andreas Terzis,et al.  Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless , 2010, SenSys '10.

[41]  Paolo Pagano,et al.  Demonstration abstract: PyoT, a macroprogramming framework for the IoT , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[42]  David E. Culler,et al.  Experiences with a high-fidelity wireless building energy auditing network , 2009, SenSys '09.

[43]  Jari Arkko,et al.  Media Types for Sensor Markup Language (SenML) , 2012 .

[44]  Dirk Timmermann,et al.  A Lightweight SOAP over CoAP Transport Binding for Resource Constraint Networks , 2011, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.

[45]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[46]  Rajnish Kumar,et al.  A Web Server Architecture for Symmetric Multiprocessor System , 2000 .

[47]  Alexey Melnikov,et al.  The WebSocket Protocol , 2011, RFC.

[48]  Jean-Philippe Vasseur,et al.  Interconnecting Smart Objects with IP: The Next Internet , 2010 .

[49]  San Murugesan,et al.  Understanding Web 2.0 , 2007, IT Professional.

[50]  Adam Dunkels,et al.  Full TCP/IP for 8-bit architectures , 2003, MobiSys '03.

[51]  Carsten Bormann,et al.  Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) , 2012, RFC.

[52]  K. Kuladinithi,et al.  Implementation of CoAP and its Application in Transport Logistics , 2011 .

[53]  August Betzler,et al.  Congestion control in reliable CoAP communication , 2013, MSWiM.

[54]  Matthias Kovatsch CoAP for the web of things: from tiny resource-constrained devices to the web browser , 2013, UbiComp.

[55]  Basavaraj Patil,et al.  Transmission of IPv6 Packets over BLUETOOTH Low Energy , 2013 .

[56]  Marc Langheinrich,et al.  BIT — A framework and architecture for providing digital services for physical products , 2010, 2010 Internet of Things (IOT).

[57]  Mark Handley,et al.  Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification , 1997, RFC.

[58]  Yacine Rezgui,et al.  In-Transit Data Analysis and Distribution in a Multi-cloud Environment Using CometCloud , 2014, 2014 International Conference on Future Internet of Things and Cloud.

[59]  Peter Druschel,et al.  Resource containers: a new facility for resource management in server systems , 1999, OSDI '99.

[60]  James R. Larus,et al.  Using Cohort-Scheduling to Enhance Server Performance , 2002, USENIX Annual Technical Conference, General Track.

[61]  Wendi Heinzelman,et al.  Energy-efficient communication protocol for wireless microsensor networks , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[62]  Kevin Weekly,et al.  OpenWSN: a standards‐based low‐power wireless development environment , 2012, Trans. Emerg. Telecommun. Technol..

[63]  Luca Mainetti,et al.  A novel architecture enabling the visual implementation of web of Things applications , 2013, 2013 21st International Conference on Software, Telecommunications and Computer Networks - (SoftCOM 2013).

[64]  Hans-Werner Gellersen Smart-Its: computers for artifacts in the physical world , 2005, CACM.

[65]  Matt Welsh,et al.  Monitoring volcanic eruptions with a wireless sensor network , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[66]  Michele Zorzi,et al.  SYNAPSE++: Code Dissemination in Wireless Sensor Networks Using Fountain Codes , 2010, IEEE Transactions on Mobile Computing.

[67]  Eric A. Brewer,et al.  USENIX Association Proceedings of HotOS IX : The 9 th Workshop on Hot Topics in Operating Systems , 2003 .

[68]  Lothar Thiele,et al.  Low-power wireless bus , 2012, SenSys '12.

[69]  Akbar Rahman,et al.  Group Communication for the Constrained Application Protocol (CoAP) , 2014, RFC.

[70]  Samuel Wieland Design and implementation of a gateway for Web-based interaction and management of embedded devices , 2009 .

[71]  Philip Levis,et al.  RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks , 2012, RFC.

[72]  Matthias Kovatsch,et al.  Californium: Scalable cloud services for the Internet of Things with CoAP , 2014, 2014 International Conference on the Internet of Things (IOT).

[73]  Friedemann Mattern,et al.  From the Internet of Computers to the Internet of Things , 2010, From Active Data Management to Event-Based Systems and More.

[74]  Matthias Kovatsch Firm firmware and apps for the internet of things , 2011, SESENA '11.

[75]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[76]  Carsten Bormann,et al.  A TCP and TLS Transport for the Constrained Application Protocol (CoAP) , 2015 .

[77]  Michael Blackstock,et al.  IoT mashups with the WoTKit , 2012, 2012 3rd IEEE International Conference on the Internet of Things.

[78]  Peter B. Danzig,et al.  The Harvest Information Discovery and Access System , 1995, Comput. Networks ISDN Syst..

[79]  Roy T. Fielding,et al.  Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing , 2014, RFC.

[80]  Bob Metcalfe,et al.  Metcalfe's Law after 40 Years of Ethernet , 2013, Computer.

[81]  Mark Nottingham,et al.  Web Linking , 2010, RFC.

[82]  Mathieu Boussard,et al.  Providing user support in Web-of-Things enabled smart spaces , 2011, WoT '11.

[83]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[84]  Paolo Pagano,et al.  T-Res: Enabling Reconfigurable In-network Processing in IoT-based WSNs , 2013, 2013 IEEE International Conference on Distributed Computing in Sensor Systems.

[85]  Salvatore Loreto,et al.  Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP , 2011, RFC.

[86]  David E. Culler,et al.  IP is dead, long live IP for wireless sensor networks , 2008, SenSys '08.

[87]  Ingrid Moerman,et al.  Facilitating the creation of IoT applications through conditional observations in CoAP , 2013, EURASIP J. Wirel. Commun. Netw..

[88]  Simon Duquennoy,et al.  Actinium: A RESTful runtime container for scriptable Internet of Things applications , 2012, 2012 3rd IEEE International Conference on the Internet of Things.

[89]  Zach Shelby,et al.  Constrained RESTful Environments (CoRE) Link Format , 2012, RFC.

[90]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[91]  Roy T. Fielding,et al.  Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content , 2014, RFC.

[92]  Suman Nath,et al.  SenseWeb: An Infrastructure for Shared Sensing , 2007, IEEE MultiMedia.

[93]  Chita R. Das,et al.  A multi-threaded PIPELINED Web server architecture for SMP/SoC machines , 2005, WWW '05.

[94]  Roger Wattenhofer,et al.  Towards a zero-configuration wireless sensor network architecture for smart buildings , 2009, BuildSys '09.

[95]  Olaf Landsiedel,et al.  Let the tree Bloom: scalable opportunistic routing with ORPL , 2013, SenSys '13.

[96]  Simon Mayer,et al.  Moving Application Logic from the Firmware to the Cloud: Towards the Thin Server Architecture for the Internet of Things , 2012, 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.

[97]  Luca Veltri,et al.  mjCoAP: An Open-Source Lightweight Java CoAP Library for Internet of Things Applications , 2014, OpenIoT@SoftCOM.

[98]  Roy T. Fielding,et al.  URI Template , 2012, RFC.

[99]  Muneeb Ali,et al.  Protothreads: simplifying event-driven programming of memory-constrained embedded systems , 2006, SenSys '06.

[100]  Jakob Buron,et al.  Transmission of IPv6 Packets over ITU-T G.9959 Networks , 2015, RFC.

[101]  Jonathan W. Hui,et al.  Marionette: using RPC for interactive development and debugging of wireless embedded networks , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[102]  Simon Mayer,et al.  In Search of an Internet of Things Service Architecture: REST or WS-*? A Developers' Perspective , 2011, MobiQuitous.

[103]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[104]  Dirk Timmermann,et al.  Connecting the web with the web of things: lessons learned from implementing a CoAP-HTTP proxy , 2012, 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012).

[105]  David E. Culler,et al.  Versatile low power media access for wireless sensor networks , 2004, SenSys '04.

[106]  Mark Nottingham,et al.  Defining Well-Known Uniform Resource Identifiers (URIs) , 2010, RFC.

[107]  Adam Dunkels,et al.  Powertrace: Network-level Power Profiling for Low-power Wireless Networks , 2011 .

[108]  Adam Dunkels,et al.  The ContikiMAC Radio Duty Cycling Protocol , 2011 .

[109]  Paul E. Hoffman,et al.  Concise Binary Object Representation (CBOR) , 2020, RFC.

[110]  Adam Dunkels,et al.  Low-power wireless IPv6 routing with ContikiRPL , 2010, IPSN '10.

[111]  Pascal Thubert,et al.  Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks , 2011, RFC.

[112]  Colin O'Flynn,et al.  Making sensor networks IPv6 ready , 2008, SenSys '08.

[113]  Dirk Timmermann,et al.  Implementing powerful Web Services for highly resource-constrained devices , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[114]  Anna Calveras Augé,et al.  TinyCoAP: A Novel Constrained Application Protocol (CoAP) Implementation for Embedding RESTful Web Services in Wireless Sensor Networks Based on TinyOS , 2013, J. Sens. Actuator Networks.

[115]  R. Kesavan,et al.  WSN Monitoring for Agriculture: Comparing SNMP and Emerging CoAP Approaches , 2013, 2013 Texas Instruments India Educators' Conference.

[116]  Ingrid Moerman,et al.  Simple RESTful sensor application development model using CoAP , 2014, 39th Annual IEEE Conference on Local Computer Networks Workshops.

[117]  Kay Römer,et al.  WebPlug: A framework for the Web of Things , 2010, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[118]  Carsten Bormann,et al.  The Constrained Application Protocol (CoAP) , 2014, RFC.

[119]  Cormac J. Sreenan,et al.  A Holistic Architecture for the Internet of Things, Sensing Services and Big Data , 2013, 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing.

[120]  Eric Rescorla,et al.  Datagram Transport Layer Security Version 1.2 , 2012, RFC.

[121]  Eric Anderson,et al.  X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks , 2006, SenSys '06.

[122]  Randy H. Katz,et al.  Next century challenges: mobile networking for “Smart Dust” , 1999, MobiCom.

[123]  Yi-Hsuan Tu,et al.  EcoCast: Interactive, object-oriented macroprogramming for networks of ultra-compact wireless sensor nodes , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[124]  August Betzler,et al.  Congestion control for CoAP cloud services , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

[125]  Geng Wu,et al.  M2M: From mobile to embedded internet , 2011, IEEE Communications Magazine.

[126]  D ClarkDavid,et al.  Rethinking the design of the Internet , 2001 .

[127]  John K. Ousterhout,et al.  Scripting: Higher-Level Programming for the 21st Century , 1998, Computer.

[128]  Markus Hidell,et al.  Design and implementation of an IoT-controlled DC-DC converter , 2013, 2013 Sustainable Internet and ICT for Sustainability (SustainIT).

[129]  Philip Levis,et al.  Maté: a tiny virtual machine for sensor networks , 2002, ASPLOS X.

[130]  Jonathan W. Hui,et al.  Multicast Protocol for Low-Power and Lossy Networks (MPL) , 2016, RFC.

[131]  Jordi Torres,et al.  Evaluating the scalability of Java event-driven Web servers , 2004, International Conference on Parallel Processing, 2004. ICPP 2004..

[132]  Silvia Santini,et al.  Connecting things to the web using programmable low-power WiFi modules , 2011, WoT '11.

[133]  Markus Becker,et al.  Transport of CoAP over SMS , 2017 .

[134]  Douglas C. Schmidt,et al.  Using design patterns to develop reusable object-oriented communication software , 1995, CACM.

[135]  Roy Fielding,et al.  Architectural Styles and the Design of Network-based Software Architectures"; Doctoral dissertation , 2000 .

[136]  David E. Culler,et al.  TinyOS: An Operating System for Sensor Networks , 2005, Ambient Intelligence.

[137]  Sanjay E. Sarma,et al.  white paper The Networked Physical World Proposals for Engineering the Next Generation of Computing, Commerce & Automatic-Identification , 2001 .

[138]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008, RFC.

[139]  David E. Culler,et al.  Transmission of IPv6 Packets over IEEE 802.15.4 Networks , 2007, RFC.

[140]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[141]  Adam Dunkels,et al.  Contiki - a lightweight and flexible operating system for tiny networked sensors , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[142]  Mark Handley,et al.  Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised) , 2016, RFC.

[143]  Adam Dunkels,et al.  The Announcement Layer: Beacon Coordination for the Sensornet Stack , 2011, EWSN.

[144]  Carsten Bormann,et al.  Observing Resources in CoAP , 2010 .

[145]  Matt Welsh,et al.  Integrating wireless sensor networks with the grid , 2004, IEEE Internet Computing.

[146]  Simon Mayer,et al.  User interfaces for smart things -- A generative approach with semantic interaction descriptions , 2014, TCHI.

[147]  David R. Cheriton,et al.  Comparing the performance of web server architectures , 2007, EuroSys '07.

[148]  Gilles Grimaud,et al.  Smews: Smart and Mobile Embedded Web Server , 2009, 2009 International Conference on Complex, Intelligent and Software Intensive Systems.

[149]  Erik Wilde,et al.  A resource oriented architecture for the Web of Things , 2010, 2010 Internet of Things (IOT).

[150]  Ilja Radusch,et al.  pREST: a REST-based protocol for pervasive systems , 2004, 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[151]  Song Han,et al.  WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control , 2008, 2008 IEEE Real-Time and Embedded Technology and Applications Symposium.

[152]  José D. P. Rolim,et al.  Syndesi: A Framework for Creating Personalized Smart Environments Using Wireless Sensor Networks , 2013, 2013 IEEE International Conference on Distributed Computing in Sensor Systems.

[153]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[154]  Deborah Estrin,et al.  The Tenet architecture for tiered sensor networks , 2006, SenSys '06.

[155]  Matt Welsh,et al.  Programming Sensor Networks Using Abstract Regions , 2004, NSDI.

[156]  Lothar Thiele,et al.  PermaDAQ: A scientific instrument for precision sensing and data recovery in environmental extremes , 2009, 2009 International Conference on Information Processing in Sensor Networks.

[157]  Salvatore Loreto,et al.  Guidelines for HTTP-to-CoAP Mapping Implementations , 2016 .

[158]  Zach Shelby,et al.  Transmission of IPv6 Packets over DECT Ultra Low Energy , 2013 .

[159]  Tim Brecht,et al.  Comparing high-performance multi-core web-server architectures , 2012, SYSTOR '12.

[160]  Randall J. Atkinson,et al.  IP Encapsulating Security Payload (ESP) , 1995, RFC.

[161]  Jordi Torres,et al.  A hybrid Web server architecture for e-commerce applications , 2005, 11th International Conference on Parallel and Distributed Systems (ICPADS'05).

[162]  Erik Wilde,et al.  Putting Things to REST , 2007 .

[163]  Saurabh Bagchi,et al.  Zephyr: efficient incremental reprogramming of sensor nodes using function call indirections and difference computation , 2009 .

[164]  Talal Ashraf Butt Provision of adaptive and context-aware service discovery for the Internet of Things , 2013, NEW2AN.

[165]  Nitin H. Vaidya,et al.  Analysis of TCP Performance over Mobile Ad Hoc Networks , 1999, Wirel. Networks.

[166]  Qin Wang,et al.  A Realistic Energy Consumption Model for TSCH Networks , 2014, IEEE Sensors Journal.

[167]  Gilman Tolle Embedded Binary HTTP (EBHTTP) , 2010 .

[168]  Carsten Bormann,et al.  Terminology for Constrained-Node Networks , 2014, RFC.

[169]  Peter I. Corke,et al.  Darjeeling, a feature-rich VM for the resource poor , 2009, SenSys '09.

[170]  Jordi Torres,et al.  Understanding tuning complexity in multithreaded and hybrid web servers , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[171]  Thiemo Voigt,et al.  Towards TCP communication with the low power wireless bus , 2013, SenSys '13.

[172]  Kamin Whitehouse,et al.  MacroLab: a vector-based macroprogramming framework for cyber-physical systems , 2008, SenSys '08.