Ermakov's Superintegrable Toy and Nonlocal Symmetries

We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the al- gebra sl(2,R). The number of point symmetries is insucient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the com- plete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The prob- lem illustrates the diculties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

[1]  K. Andriopoulos,et al.  Wavefunctions for the time-dependent linear oscillator and Lie point symmetries , 2005 .

[2]  M. C. Nucci,et al.  Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship , 2005 .

[3]  M. Nucci,et al.  Jacobi’s Last Multiplier and the Complete Symmetry Group of the Ermakov-Pinney Equation , 2005 .

[4]  M. C. Nucci,et al.  Reduction of the classical MICZ-Kepler problem to a two- dimensional linear isotropic harmonic oscillator , 2004 .

[5]  M. C. Nucci,et al.  Jacobi's last multiplier and symmetries for the Kepler problem plus a lineal story , 2004 .

[6]  F. Haas,et al.  Lie Point Symmetries for Reduced Ermakov Systems , 2004, nlin/0404031.

[7]  S. Moyo,et al.  A note on the construction of the Ermakov–Lewis invariant , 2002 .

[8]  K. Andriopoulos,et al.  The Economy of Complete Symmetry Groups for Linear Higher Dimensional Systems , 2002 .

[9]  M. Nucci,et al.  Jacobi’s Last Multiplier and the Complete Symmetry Group of the Euler–Poinsot System , 2002, nlin/0206004.

[10]  P. G. L. Leach,et al.  Complete symmetry groups of ordinary differential equations and their integrals : Some basic considerations , 2001 .

[11]  F. Haas,et al.  Dynamical symmetries and the Ermakov invariant , 2001, math-ph/0211038.

[12]  S. Moyo,et al.  Exceptional Properties of Second and Third Order Ordinary Differential Equations of Maximal Symmetry , 2000 .

[13]  M. C. Nucci,et al.  The Determination of Nonlocal Symmetries by the Technique of Reduction of Order , 2000 .

[14]  M. C. Nucci,et al.  The harmony in the Kepler and related problems , 2000, nlin/0011011.

[15]  F. Haas,et al.  On the Hamiltonian structure of Ermakov systems , 1996, math-ph/0211032.

[16]  Maria Clara Nucci,et al.  The complete Kepler group can be derived by Lie group analysis , 1996 .

[17]  J. Krause,et al.  On the complete symmetry group of the classical Kepler system , 1994 .

[18]  K. Govinder,et al.  GENERALIZED ERMAKOV SYSTEMS IN TERMS OF sl(2,R) INVARIANTS , 1993 .

[19]  C. Athorne On generalized Ermakov systems , 1991 .

[20]  P. Leach Generalized Ermakov systems , 1991 .

[21]  Fazal M. Mahomed,et al.  Symmetry Lie algebras of nth order ordinary differential equations , 1990 .

[22]  F. Mahomed,et al.  Maximal subalgebra associated with a first integral of a system possessing sl(3,R) algebra , 1988 .

[23]  H. Lewis,et al.  A direct approach to finding exact invariants for one‐dimensional time‐dependent classical Hamiltonians , 1982 .

[24]  P. Leach Applications of the Lie theory of extended groups in Hamiltonian mechanics: the oscillator and the Kepler problem , 1981, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[25]  J. R. Ray,et al.  Noether’s theorem and Ermakov systems for nonlinear equations of motion , 1980 .

[26]  J. R. Ray Nonlinear superposition law for generalized Ermakov systems , 1980 .

[27]  J. R. Ray,et al.  Ermakov systems, nonlinear superposition, and solutions of nonlinear equations of motion , 1980 .

[28]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[29]  P. Leach On a direct method for the determination of an exact invariant for the time-dependent harmonic oscillator , 1977, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[30]  P. Leach,et al.  Generalized Invariants for the Time Dependent Harmonic Oscillator , 1977 .

[31]  C. J. Eliezer,et al.  A Note on the Time-Dependent Harmonic Oscillator , 1976 .

[32]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[33]  H. R. Lewis,et al.  Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators , 1968 .

[34]  J. Lewis Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians , 1967 .

[35]  M. Kruskal,et al.  Asymptotic Theory of Hamiltonian and other Systems with all Solutions Nearly Periodic , 1962 .

[36]  J. Gutierrez,et al.  Utilisation des groupes de transformation pour la resolution des equations aux derivees partielles , 1978 .

[37]  H. R. Lewis MOTION OF A TIME-DEPENDENT HARMONIC OSCILLATOR, AND OF A CHARGED PARTICLE IN A CLASS OF TIME-DEPENDENT, AXIALLY SYMMETRIC ELECTROMAGNETIC FIELDS. , 1968 .