From Mie to Fresnel through effective medium approximation with multipole contributions

The Mie theory gives the exact solution to scattering from spherical particles while the Fresnel theory provides the solution to optical behavior of multilayer thin film structures. Often, the bridge between the two theories to explain the behavior of materials such as nanoparticles in a host dielectric matrix, is done by effective medium approximation (EMA) models which exclusively rely on the dipolar response of the scattering objects. Here, we present a way to capture multipole effects using EMA. The effective complex dielectric function of the composite is derived using the Clausius–Mossotti relation and the multipole coefficients of the approximate Mie theory. The optical density (OD) of the dielectric slab is then calculated using the Fresnel approach. We have applied the resulting equation to predict the particle size dependent dipole and quadrupole behavior for spherical Ag nanoparticles embedded in glass matrix. This dielectric function contains the relevant properties of EMA and at the same time predicts the multipole contributions present in the single particle Mie model.

[1]  R. Lukaszew,et al.  Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films , 2010 .

[2]  R. Sureshkumar,et al.  Nonlinear optical properties of multi-metal nanocomposites in a glass matrix , 2009 .

[3]  L M Lechuga,et al.  Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. , 2006, Optics letters.

[4]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[5]  C. R. Martin,et al.  Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory , 1992 .

[6]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  Barrera,et al.  Renormalized polarizability in the Maxwell Garnett theory. , 1988, Physical review. B, Condensed matter.

[8]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[9]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[11]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[12]  C. Brosseau,et al.  Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures , 2011 .

[13]  E. Kotomin,et al.  Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media , 1998 .

[14]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[15]  N. Félidj,et al.  Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids , 1999 .

[16]  M. Lax MULTIPLE SCATTERING OF WAVES. II. THE EFFECTIVE FIELD IN DENSE SYSTEMS , 1952 .

[17]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[18]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[19]  Z. B. Wang,et al.  Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies , 2007 .

[20]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[21]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[22]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[23]  R. Sachan,et al.  Optical Plasmon Properties of Co-Ag Nanocomposites Within the Mean-Field Approximation , 2012, Plasmonics.

[24]  R. Gans,et al.  Zur Optik kolloidaler Metallösungen , 1909 .

[25]  Charles R. Martin,et al.  Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit , 1997 .

[26]  Michael J. Ford,et al.  Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver , 2009 .

[27]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[28]  R. Bachrach,et al.  Exciton-Optical Properties of TlBr and TlCl , 1970 .

[29]  Pennsylvania State University,et al.  A limitation of the Bruggeman formalism for homogenization , 2004 .

[30]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[31]  Akhlesh Lakhtakia,et al.  Size-dependent Maxwell-Garnett formula from an integral equation formalism , 1992 .

[32]  Akhlesh Lakhtakia,et al.  On the extended Maxwell-Garnett and the extended Bruggeman approaches for dielectric-in-dielectric composites , 1994 .

[33]  Clifton E. Dungey,et al.  Light scattering by nonspherical particles : a refinement to the coupled-dipole method , 1991 .

[34]  Satoshi Tomita,et al.  Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles. , 2006, Physical review letters.

[35]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[37]  C. R. Martin,et al.  Optical properties of a family of Au-nanoparticle-containing alumina membranes in which the nanoparticle shape is varied from needle-like (prolate) to spheroid, to pancake-like (oblate) , 1997 .

[38]  Charles R. Martin,et al.  Optical properties of composite membranes containing arrays of nanoscopic gold cylinders , 1992 .

[39]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[40]  L. Lewin The electrical constants of a material loaded with spherical particles , 1947 .