Moderate deviation principles for importance sampling estimators of risk measures

Importance sampling has become an important tool for the computation of extreme quantiles and tail-based risk measures. For estimation of such nonlinear functionals of the underlying distribution, the standard efficiency analysis is not necessarily applicable. In this paper we therefore study importance sampling algorithms by considering moderate deviations of the associated weighted empirical processes. Using a delta method for large deviations, combined with classical large deviation techniques, the moderate deviation principle is obtained for importance sampling estimators of two of the most common risk measures: value at risk and expected shortfall.

[1]  Moderate deviations for particle filtering , 2004, math/0401058.

[2]  P. Moral,et al.  Moderate Deviations for Interacting Processes , 2015 .

[3]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[4]  E. Giné,et al.  Stochastic inequalities and applications , 2003 .

[5]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[6]  A. Acosta Moderate deviations for empirical measures of Markov chains : Lower bounds , 1997 .

[8]  Liming Wu Large Deviations, Moderate Deviations and LIL for Empirical Processes , 1994 .

[9]  P. Dupuis,et al.  Importance Sampling, Large Deviations, and Differential Games , 2004 .

[10]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[11]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[12]  M. Ledoux Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi , 1992 .

[13]  Paul Dupuis,et al.  Subsolutions of an Isaacs Equation and Efficient Schemes for Importance Sampling , 2005, Math. Oper. Res..

[14]  Peter W. Glynn,et al.  On Lyapunov Inequalities and Subsolutions for Efficient Importance Sampling , 2012, TOMC.

[15]  R. Dudley,et al.  Uniform Central Limit Theorems: Notation Index , 2014 .

[16]  M. A. Arcones,et al.  Moderate Deviations of Empirical Processes , 2003 .

[17]  Henrik Hult,et al.  Efficient calculation of risk measures by importance sampling -- the heavy tailed case , 2009 .

[18]  J. Blanchet,et al.  State-dependent importance sampling for regularly varying random walks , 2008, Advances in Applied Probability.

[19]  P. Glynn,et al.  Efficient rare-event simulation for the maximum of heavy-tailed random walks , 2008, 0808.2731.

[20]  Xingqiu Zhao,et al.  DELTA METHOD IN LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR ESTIMATORS , 2011, 1105.3552.

[21]  A. A. Borovkov,et al.  Probabilities of large deviations in topological spaces. I , 1978 .

[22]  Paul Glasserman,et al.  Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors , 2002 .

[23]  Fuqing Gao,et al.  Asymptotic behavior of the empirical conditional value-at-risk , 2011 .