Fabrication of interdigitated back-contact silicon heterojunction solar cells on a 53-µm-thick crystalline silicon substrate by using the optimized inkjet printing method for etching mask formation

Inkjet-printing-based fabrication process of the interdigitated back-contact silicon heterojunction solar cells has the potential to reduce the manufacturing costs because of its low machine and material costs and its applicability to thinner fragile silicon substrates than 100 µm. In this study, ink and printing parameters were investigated to obtain the desirable fine patterns and the resultant accuracy of the linewidths was less than ±0.05 mm on a flat surface. The completed cells using inkjet-printing showed almost the same performance of that fabricated by photolithography. In addition, flexible and free-standing cell on a 53-µm-thick Si substrate has been successfully fabricated.

[1]  H. Noge,et al.  Two-dimensional simulation of interdigitated back contact silicon heterojunction solar cells having overlapped p/i and n/i a-Si:H layers , 2015 .

[2]  K. Saito,et al.  Fabrication of Interdigitated Back Contact Silicon Heterojunction Solar Cells by Inkjet Patterning , 2014 .

[3]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[4]  R. Kleiman,et al.  Novel process flow and cell architecture for 10 µm thick membrane single-crystalline silicon solar cell , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[5]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[6]  L. Korte,et al.  Effect of wet-chemical substrate pretreatment on electronic interface properties and recombination losses of a -Si:H/c -Si and a -SiNx:H/c -Si hetero-interfaces , 2011 .

[7]  Murat Okandan,et al.  Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell , 2011 .

[8]  J. Fossum,et al.  Back-contact solar cells in thin crystalline silicon , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[9]  R. Brendel,et al.  Back contact monocrystalline thin-film silicon solar cells from the porous silicon process , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[10]  M. Yamaguchi,et al.  Light trapping effect of submicron surface textures in crystalline Si solar cells , 2007 .

[11]  C. Hansen,et al.  Hansen Solubility Parameters : A User's Handbook, Second Edition , 2007 .

[12]  Klaus Wetzig,et al.  Study on the Mechanism of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures , 2007 .

[13]  C. Hansen,et al.  50 Years with solubility parameters—past and future ☆ , 2004 .

[14]  R. Mertens,et al.  Characterization of free-standing thin crystalline films on porous silicon for solar cells , 2004 .

[15]  R. Brendel,et al.  Textured monocrystalline thin‐film Si cells from the porous silicon (PSI) process , 2001 .

[16]  C. Hansen Hansen Solubility Parameters: A User's Handbook , 1999 .

[17]  Christopher Hebling,et al.  Silicon thin-film solar cells on insulating intermediate layers , 1997 .

[18]  J. Korvink,et al.  Inkjet Technology for Crystalline Silicon Photovoltaics , 2015, Advanced materials.

[19]  Martin A. Green,et al.  21.5% Efficient thin silicon solar cell , 1996 .