Atopic dermatitis: molecular, cellular, and clinical aspects

[1]  J. McGrath,et al.  Structure and function of skin, hair and nails , 2009, Medicine.

[2]  C. Vestergaard,et al.  Immunosuppressive and Immunomodulating Therapy for Atopic Dermatitis in Pregnancy: An Appraisal of the Literature , 2020, Dermatology and Therapy.

[3]  Sung Chan Kim,et al.  Galectin-9 Induced by Dietary Prebiotics Regulates Immunomodulation to Reduce Atopic Dermatitis Symptoms in 1-Chloro- 2,4-Dinitrobenzene (DNCB)-Treated NC/Nga Mice , 2020, Journal of microbiology and biotechnology.

[4]  Seong-Yeop Jeong,et al.  Pediococcus acidilactici intake decreases the clinical severity of atopic dermatitis along with increasing mucin production and improving the gut microbiome in Nc/Nga mice. , 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[5]  A. Horswill,et al.  Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. , 2020, The Journal of allergy and clinical immunology.

[6]  C. Lynde,et al.  Diagnosis and Management of Atopic Dermatitis for Primary Care Providers , 2020, The Journal of the American Board of Family Medicine.

[7]  Sooyoung Lee,et al.  A randomized trial of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) for treating atopic dermatitis , 2020, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.

[8]  T. Agner,et al.  The Skin Microbiome in Inflammatory Skin Diseases , 2020, Current Dermatology Reports.

[9]  Ping Liu,et al.  Clinical relevance of eosinophils, basophils, serum total IgE level, allergen‐specific IgE, and clinical features in atopic dermatitis , 2020, Journal of clinical laboratory analysis.

[10]  M. Kravicz,et al.  Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis , 2020, Drug Delivery and Translational Research.

[11]  J. Cho,et al.  Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment , 2019, Journal of ginseng research.

[12]  J. Silverberg,et al.  Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. , 2020, The journal of allergy and clinical immunology. In practice.

[13]  C. Flohr,et al.  European task force on atopic dermatitis position paper: treatment of parental atopic dermatitis during preconception, pregnancy and lactation period , 2019, Journal of the European Academy of Dermatology and Venereology : JEADV.

[14]  E. D. Di Domenico,et al.  Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis , 2019, Microorganisms.

[15]  Shinichi Sato,et al.  Increased interleukin-26 expression promotes Th17 and Th2-associated cytokine production by keratinocytes in atopic dermatitis. , 2019, The Journal of investigative dermatology.

[16]  V. Shi,et al.  Skin bacterial transplant in atopic dermatitis: Knowns, unknowns and emerging trends. , 2019, Journal of dermatological science.

[17]  Hong Wang,et al.  Phenotypic analysis of atopic dermatitis in children aged 1–12 months: elaboration of novel diagnostic criteria for infants in China and estimation of prevalence , 2019, Journal of the European Academy of Dermatology and Venereology : JEADV.

[18]  H. Yokozeki,et al.  Why does sweat lead to the development of itch in atopic dermatitis? , 2019, Experimental dermatology.

[19]  Sandeep Sharma,et al.  Anatomy, Skin (Integument), Epidermis , 2019 .

[20]  Y. Bisyuk,et al.  Efficacy of Probiotic Therapy on Atopic Dermatitis in Adults Depends on the C-159T Polymorphism of the CD14 Receptor Gene - A Pilot Study , 2019, Open access Macedonian journal of medical sciences.

[21]  Shinichi Sato,et al.  Novel topical and systemic therapies in atopic dermatitis , 2019, Immunological medicine.

[22]  L. Beck,et al.  Treatment-resistant atopic dermatitis: challenges and solutions , 2019, Clinical, cosmetic and investigational dermatology.

[23]  T. Sumpter,et al.  Cutaneous immune responses mediated by dendritic cells and mast cells. , 2019, JCI insight.

[24]  A. Irvine,et al.  The Role of Filaggrin in Atopic Dermatitis and Allergic Disease. , 2019, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[25]  H. Murota,et al.  Sweat in the pathogenesis of atopic dermatitis. , 2018, Allergology international : official journal of the Japanese Society of Allergology.

[26]  P. Wertz Epidermal Lamellar Granules , 2018, Skin Pharmacology and Physiology.

[27]  T. Biedermann,et al.  Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. , 2018, Trends in immunology.

[28]  M. Fischbach,et al.  Skin microbiota–host interactions , 2018, Nature.

[29]  Chuanbin Wu,et al.  Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose , 2017, International journal of nanomedicine.

[30]  M. Ishii,et al.  Claudin-3 Loss Causes Leakage of Sweat from the Sweat Gland to Contribute to the Pathogenesis of Atopic Dermatitis. , 2017, The Journal of investigative dermatology.

[31]  S. Langan,et al.  The prevalence of atopic dermatitis beyond childhood: A systematic review and meta‐analysis of longitudinal studies , 2017, Allergy.

[32]  A. R. Vaughn,et al.  Sweat mechanisms and dysfunctions in atopic dermatitis. , 2017, Journal of dermatological science.

[33]  K. Yuen,et al.  A Unique Pattern of Staphylococcal Scalded Skin Syndrome-Like Erosions in Patients with Atopic Dermatitis: Dermatitis flammeus. , 2018, Skinmed.

[34]  D. Prieto-Merino,et al.  Effect of Oral Administration of a Mixture of Probiotic Strains on SCORAD Index and Use of Topical Steroids in Young Patients With Moderate Atopic Dermatitis: A Randomized Clinical Trial , 2018, JAMA dermatology.

[35]  G. Núñez,et al.  Role of the microbiota in skin immunity and atopic dermatitis. , 2017, Allergology international : official journal of the Japanese Society of Allergology.

[36]  Ruixue Huang,et al.  Probiotics for the Treatment of Atopic Dermatitis in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials , 2017, Front. Cell. Infect. Microbiol..

[37]  H. Rohde,et al.  Biphasic influence of Staphylococcus aureus on human epidermal tight junctions , 2017, Annals of the New York Academy of Sciences.

[38]  Allyson L. Byrd,et al.  Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis , 2017, Science Translational Medicine.

[39]  Mina Rho,et al.  A Metagenomic Analysis Provides a Culture-Independent Pathogen Detection for Atopic Dermatitis , 2017, Allergy, asthma & immunology research.

[40]  K. Pathak,et al.  Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews , 2017 .

[41]  Thomas Bieber,et al.  Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? , 2017, The Journal of allergy and clinical immunology.

[42]  Linfeng Li,et al.  Prevalence and clinical features of adult atopic dermatitis in tertiary hospitals of China , 2017, Medicine.

[43]  P. Dorrestein,et al.  Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis , 2017, Science Translational Medicine.

[44]  T. Pawełczyk,et al.  Altered Expression of Genes Encoding Cornulin and Repetin in Atopic Dermatitis , 2017, International Archives of Allergy and Immunology.

[45]  D. Leung,et al.  Atopic dermatitis is associated with reduced corneodesmosin expression: role of cytokine modulation and effects on viral penetration , 2017, The British journal of dermatology.

[46]  M. Honma,et al.  Incomplete KLK7 Secretion and Upregulated LEKTI Expression Underlie Hyperkeratotic Stratum Corneum in Atopic Dermatitis. , 2017, The Journal of investigative dermatology.

[47]  김민혜 A Metagenomic Analysis Provides a Culture-Independent Pathogen Detection for Atopic Dermatitis , 2017 .

[48]  Y. Tokura,et al.  Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17 , 2016, PloS one.

[49]  M. Nordenskjöld,et al.  The tight junction gene Claudin‐1 is associated with atopic dermatitis among Ethiopians , 2016, Journal of the European Academy of Dermatology and Venereology : JEADV.

[50]  W. Lee,et al.  The crucial role of IL‐22 and its receptor in thymus and activation regulated chemokine production and T‐cell migration by house dust mite extract , 2016, Experimental dermatology.

[51]  D. Cho,et al.  Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis , 2016, International journal of molecular sciences.

[52]  Kern Rei Chng,et al.  Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare , 2016, Nature Microbiology.

[53]  K. Stone,et al.  Transplantation of human skin microbiota in models of atopic dermatitis. , 2016, JCI insight.

[54]  S. Tsukita,et al.  Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis , 2016, Proceedings of the National Academy of Sciences.

[55]  G. Ogg,et al.  Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity , 2016, The Journal of allergy and clinical immunology.

[56]  A. McKenzie,et al.  Group 2 innate lymphoid cells license dendritic cells to potentiate memory T helper 2 cell responses , 2015, Nature Immunology.

[57]  Merve Nenni,et al.  Effective topical delivery systems for corticosteroids: dermatological and histological evaluations , 2014, Drug delivery.

[58]  K. Sugimoto Staphylococcus aureus vs. Atopic Dermatitis , 2016 .

[59]  J. Bouwstra,et al.  Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. , 2016, Current problems in dermatology.

[60]  T. Honda,et al.  The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. , 2015, The Journal of allergy and clinical immunology.

[61]  H. Hennies,et al.  Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. , 2015, The American journal of pathology.

[62]  A. Paller,et al.  Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. , 2015, The Journal of allergy and clinical immunology.

[63]  Bombi Lee,et al.  Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA‐induced atopic dermatitis in mice through improving intestinal microbiota , 2015, Journal of applied microbiology.

[64]  N. Novak,et al.  IL-31 Induces Chemotaxis, Calcium Mobilization, Release of Reactive Oxygen Species, and CCL26 in Eosinophils, Which Are Capable to Release IL-31. , 2015, The Journal of investigative dermatology.

[65]  M. Suárez-Fariñas,et al.  Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population. , 2015, The Journal of allergy and clinical immunology.

[66]  R. Nazarian,et al.  Immunologic Overlap of Helper T-Cell Subtypes 17 and 22 in Erythrodermic Psoriasis and Atopic Dermatitis. , 2015, JAMA dermatology.

[67]  M. Sotto,et al.  Profile of skin barrier proteins (filaggrin, claudins 1 and 4) and Th1/Th2/Th17 cytokines in adults with atopic dermatitis , 2015, Journal of the European Academy of Dermatology and Venereology : JEADV.

[68]  H. Kong,et al.  Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. , 2015, Immunity.

[69]  S. Kežić,et al.  In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification , 2015, Cell Death and Disease.

[70]  T. Bieber,et al.  Pathogenesis of atopic dermatitis , 2008, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[71]  M. Amagai,et al.  Epidermal tight junction barrier function is altered by skin inflammation, but not by filaggrin-deficient stratum corneum. , 2015, Journal of dermatological science.

[72]  T. Litman,et al.  Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. , 2015, The Journal of allergy and clinical immunology.

[73]  Sung-Ho Kim,et al.  Skin pH is the Master Switch of Kallikrein 5-Mediated Skin Barrier Destruction in a Murine Atopic Dermatitis Model. , 2015, The Journal of investigative dermatology.

[74]  B. Melnik The potential role of impaired Notch signalling in atopic dermatitis. , 2015, Acta dermato-venereologica.

[75]  E. Choi,et al.  Pyrrolidone carboxylic acid levels or caspase-14 expression in the corneocytes of lesional skin correlates with clinical severity, skin barrier function and lesional inflammation in atopic dermatitis. , 2014, Journal of dermatological science.

[76]  W. Weninger,et al.  Dermal group 2 innate lymphoid cells in atopic dermatitis and allergy. , 2014, Current opinion in immunology.

[77]  P. Nibbering,et al.  Reduced filaggrin expression is accompanied by increased Staphylococcus aureus colonization of epidermal skin models , 2014, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[78]  J. Segre,et al.  Dialogue between skin microbiota and immunity , 2014, Science.

[79]  A. Heratizadeh,et al.  Staphylococcal Exotoxins Induce Interleukin 22 in Human Th22 Cells , 2014, International Archives of Allergy and Immunology.

[80]  P. Elias,et al.  Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. , 2014, The Journal of allergy and clinical immunology.

[81]  J. Bouwstra,et al.  TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. , 2014, The Journal of investigative dermatology.

[82]  S. Feldman,et al.  Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. , 2014, Journal of the American Academy of Dermatology.

[83]  Liangdan Sun,et al.  Filaggrin Gene Mutation c.3321delA Is Associated with Various Clinical Features of Atopic Dermatitis in the Chinese Han Population , 2014, PloS one.

[84]  R. Tamagawa‐Mineoka,et al.  Increased serum levels of interleukin 33 in patients with atopic dermatitis. , 2014, Journal of American Academy of Dermatology.

[85]  Christopher Chang,et al.  Molecular Biology of Atopic Dermatitis , 2014, Clinical Reviews in Allergy & Immunology.

[86]  P. Klenerman,et al.  Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells☆ , 2014, The Journal of allergy and clinical immunology.

[87]  Seung-hun Lee,et al.  Epidermal Permeability Barrier Defects and Barrier Repair Therapy in Atopic Dermatitis , 2014, Allergy, asthma & immunology research.

[88]  Y. Banno,et al.  Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. , 2014, The Journal of investigative dermatology.

[89]  S. Kežić,et al.  South African amaXhosa patients with atopic dermatitis have decreased levels of filaggrin breakdown products but no loss-of-function mutations in filaggrin , 2014, The Journal of allergy and clinical immunology.

[90]  G. Ogg,et al.  A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis , 2013, The Journal of experimental medicine.

[91]  T. Agner,et al.  Human β‐defensin‐2 as a marker for disease severity and skin barrier properties in atopic dermatitis , 2013, The British journal of dermatology.

[92]  Julia Oh,et al.  Human Skin Fungal Diversity , 2013, Nature.

[93]  A. Yu,et al.  Claudins and the modulation of tight junction permeability. , 2013, Physiological reviews.

[94]  M. Simon,et al.  Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. , 2013, The Journal of allergy and clinical immunology.

[95]  M. Cork,et al.  The effects of pimecrolimus on the innate immune response in atopic dermatitis , 2013, The British journal of dermatology.

[96]  A. Irvine,et al.  The multifunctional role of filaggrin in allergic skin disease. , 2013, The Journal of allergy and clinical immunology.

[97]  A. Borkowski,et al.  Activation of epidermal toll-like receptor 2 enhances tight junction function – Implications for atopic dermatitis and skin barrier repair , 2012, The Journal of investigative dermatology.

[98]  D. Morris,et al.  Clinical dermatology. , 2013, The Veterinary clinics of North America. Small animal practice.

[99]  M. Kleerebezem,et al.  Microbiome dynamics of human epidermis following skin barrier disruption , 2012, Genome Biology.

[100]  G. Imokawa,et al.  Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: an implication for the disrupted barrier mechanism in atopic dermatitis. , 2012, Journal of dermatological science.

[101]  S. Ziegler Thymic stromal lymphopoietin and allergic disease. , 2012, The Journal of allergy and clinical immunology.

[102]  Judith Nebus,et al.  Management of Patients with Atopic Dermatitis: The Role of Emollient Therapy , 2012, Dermatology research and practice.

[103]  R. Gallo,et al.  TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. , 2012, The Journal of allergy and clinical immunology.

[104]  P. Avila,et al.  Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. , 2012, The Journal of allergy and clinical immunology.

[105]  A. Hovnanian,et al.  The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. , 2012, Human molecular genetics.

[106]  H. Tagami,et al.  Decreased lactate and potassium levels in natural moisturizing factor from the stratum corneum of mild atopic dermatitis patients are involved with the reduced hydration state. , 2012, Journal of dermatological science.

[107]  J. Vilo,et al.  Mechanisms of IFN-γ-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. , 2012, The Journal of allergy and clinical immunology.

[108]  T. Reunala,et al.  IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. , 2012, The Journal of investigative dermatology.

[109]  R. Fölster-Holst,et al.  IL‐31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis , 2012, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.

[110]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[111]  Shinichi Watanabe,et al.  Increased serum human β-defensin-2 levels in atopic dermatitis: relationship to IL-22 and oncostatin M. , 2012, Immunobiology.

[112]  N. Novak An update on the role of human dendritic cells in patients with atopic dermatitis. , 2012, The Journal of allergy and clinical immunology.

[113]  S. Kežić,et al.  Atopic dermatitis and skin disease Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency , 2012 .

[114]  Hergen Spits,et al.  Innate lymphoid cells: emerging insights in development, lineage relationships, and function. , 2012, Annual review of immunology.

[115]  L. DeLouise,et al.  Applications of nanotechnology in dermatology. , 2012, The Journal of investigative dermatology.

[116]  B. Lüscher,et al.  IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. , 2012, The Journal of allergy and clinical immunology.

[117]  Won-hee Jang,et al.  Decrease of ceramides with very long-chain fatty acids and downregulation of elongases in a murine atopic dermatitis model. , 2012, The Journal of investigative dermatology.

[118]  S. Molyneux,et al.  Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. , 2012, Immunity.

[119]  C. Vestergaard,et al.  IL-25 induces both inflammation and skin barrier dysfunction in atopic dermatitis. , 2012, Chemical immunology and allergy.

[120]  A. Irvine,et al.  Filaggrin mutations associated with skin and allergic diseases. , 2011, The New England journal of medicine.

[121]  Yoshinori Sugiyama,et al.  Activation of TLR2 Enhances Tight Junction Barrier in Epidermal Keratinocytes , 2011, The Journal of Immunology.

[122]  G. Ogg,et al.  Interleukin‐22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes , 2011, The British journal of dermatology.

[123]  J. Carucci,et al.  Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. , 2011, The Journal of allergy and clinical immunology.

[124]  C. Johansen,et al.  Regulation of caspase 14 expression in keratinocytes by inflammatory cytokines – a possible link between reduced skin barrier function and inflammation? , 2011, Experimental dermatology.

[125]  K. Barnes,et al.  Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. , 2011, The Journal of allergy and clinical immunology.

[126]  S. Kežić,et al.  Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity , 2011, Allergy.

[127]  M. Boguniewicz,et al.  TNF-α downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier. , 2011, The Journal of investigative dermatology.

[128]  T. Beaty,et al.  Tight junction defects in patients with atopic dermatitis. , 2011, The Journal of allergy and clinical immunology.

[129]  Y. Gho,et al.  Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation , 2011, Allergy.

[130]  Martin Schaller,et al.  Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. , 2011, The Journal of investigative dermatology.

[131]  H. Mizutani,et al.  The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. , 2011, Current problems in dermatology.

[132]  A. Irvine,et al.  Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus , 2010, The Journal of allergy and clinical immunology.

[133]  Y. Takema,et al.  Changes in the ceramide profile of atopic dermatitis patients. , 2010, The Journal of investigative dermatology.

[134]  Seung Hun Lee,et al.  Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis , 2010, Yonsei medical journal.

[135]  F. Bernard,et al.  Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α Recapitulates Some Features of Psoriasis , 2010, The Journal of Immunology.

[136]  U. Mrowietz,et al.  Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. , 2010, The Journal of investigative dermatology.

[137]  M. Amagai,et al.  External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers , 2009, The Journal of experimental medicine.

[138]  T. Kawakami,et al.  Mast cells in atopic dermatitis. , 2009, Current opinion in immunology.

[139]  A. Scheynius,et al.  Enhanced expression of the antimicrobial peptide LL‐37 in lesional skin of adults with atopic eczema , 2009, The British journal of dermatology.

[140]  K. Barnes,et al.  Cytokine modulation of atopic dermatitis filaggrin skin expression. , 2009, The Journal of allergy and clinical immunology.

[141]  J. Ring,et al.  IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. , 2009, The Journal of allergy and clinical immunology.

[142]  Z. Ikezawa,et al.  Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. , 2009, Journal of dermatological science.

[143]  P. Elias,et al.  Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. , 2008, The Journal of allergy and clinical immunology.

[144]  M. Pembrey,et al.  The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. , 2008, The Journal of allergy and clinical immunology.

[145]  K. Rosenthal,et al.  Skin Structure and Function: The Body's Primary Defense Against Infection , 2008 .

[146]  M. Boguniewicz,et al.  Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. , 2008, Clinical immunology.

[147]  H. Rosenberg,et al.  Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses , 2008, The Journal of experimental medicine.

[148]  A. Hovnanian,et al.  LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. , 2007, Molecular biology of the cell.

[149]  Katsuaki Sato,et al.  Dendritic cells: nature and classification. , 2007, Allergology international : official journal of the Japanese Society of Allergology.

[150]  M. Lutz,et al.  The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. , 2006, Immunobiology.

[151]  Seung Hun Lee,et al.  An Update of the Defensive Barrier Function of Skin , 2006, Yonsei medical journal.

[152]  J. Brandner,et al.  Tight Junction Proteins in the Skin , 2006, Skin Pharmacology and Physiology.

[153]  M. Tsai,et al.  Mast Cell-Associated TNF Promotes Dendritic Cell Migration1 , 2006, The Journal of Immunology.

[154]  T. Bieber,et al.  Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. , 2005, The Journal of investigative dermatology.

[155]  Noreen Heer Nicol,et al.  Anatomy and Physiology of the Skin , 2005, Dermatology nursing.

[156]  H. Simon,et al.  Eosinophils and atopic dermatitis , 2004, Allergy.

[157]  R. Fölster-Holst,et al.  Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. , 2004, The Journal of investigative dermatology.

[158]  M. Otto Virulence factors of the coagulase-negative staphylococci. , 2004, Frontiers in bioscience : a journal and virtual library.

[159]  J. Kanitakis,et al.  Anatomy, histology and immunohistochemistry of normal human skin. , 2002, European journal of dermatology : EJD.

[160]  C Schmied,et al.  [Epidemiology of atopic dermatitis]. , 1989, Annales de dermatologie et de venereologie.