Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods
暂无分享,去创建一个
Alan J. H. McGaughey | Simon R. Phillpot | Aleksandr V. Chernatynskiy | A. McGaughey | S. Phillpot | C. Amon | J. Turney | A. Chernatynskiy | Joseph E. Turney | Christina H. Amon
[1] C. Ronchi,et al. Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity. , 1999 .
[2] Min Zhou,et al. Size-dependent thermal conductivity of zinc oxide nanobelts , 2006 .
[3] Cristina H. Amon,et al. Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .
[4] A. Yavari,et al. Effect of external normal and parallel electric fields on 180° ferroelectric domain walls in PbTiO3 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[5] David Broido,et al. Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .
[6] J. Maier,et al. Effective masses of electrons in n-type SrTiO3 determined from low-temperature specific heat capacities , 2007 .
[7] A. W. Overhauser,et al. Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .
[8] J. L. Zhang,et al. Thermoelectric properties of Sr1−xNdxTiO3 ceramics , 2010 .
[9] G. K. Horton,et al. Lattice dynamics at high temperature , 1987 .
[10] James S. Tulenko,et al. Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .
[11] Jianjun Dong,et al. Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.
[12] Amelia Carolina Sparavigna,et al. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .
[13] A. McGaughey,et al. Size effects in molecular dynamics thermal conductivity predictions , 2010 .
[14] Ryoji Funahashi,et al. Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .
[15] P. Klemens. The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .
[16] R. Caudron,et al. Local order and thermal conductivity in yttria-stabilized zirconia. I. Microstructural investigations using neutron diffuse scattering and atomic-scale simulations , 2005 .
[17] J. Board,et al. Ewald summation techniques in perspective: a survey , 1996 .
[18] A. McGaughey,et al. Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .
[19] P. Madden,et al. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. , 2009, The Journal of chemical physics.
[20] Simon R. Phillpot,et al. Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .
[21] D. A. Broido,et al. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .
[22] S. Phillpot,et al. Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .
[23] Natalio Mingo,et al. Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .
[24] S. Pettersson,et al. Calculation of the thermal conductivity of alkali halide crystals , 1987 .
[25] M. Gillan,et al. A computer simulation study of transport coefficients in alkali halides , 1990 .
[26] S. Phillpot,et al. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .
[27] J. Alejandre,et al. The Wolf method applied to the liquid-vapor interface of water. , 2008, The Journal of chemical physics.
[28] Carlos G. Levi,et al. MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .
[29] J. Gale,et al. Defects and dislocations in MgO: Atomic scale models of impurity segregation and fast pipe diffusion , 2010 .
[30] Lars Stixrude,et al. Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals , 2010 .
[31] Robin W. Grimes,et al. Morphology of UO2 , 1999 .
[32] G. V. Paolini,et al. The thermal conductivity of defective crystals , 1997 .
[33] D Fincham,et al. Shell model simulations by adiabatic dynamics , 1993 .
[34] K. Udayakumar,et al. Non-stoichiometry in alkaline earth excess alkaline earth titanates , 1989 .
[35] Claude Degueldre,et al. Thermophysical Properties of Inert Matrix Fuels for Actinide Transmutation. , 2003 .
[36] Baoling Huang,et al. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .
[37] Pettersson. Solving the phonon Boltzmann equation with the variational method. , 1991, Physical review. B, Condensed matter.
[38] N. Koker. Thermal conductivity of MgO periclase at high pressure: Implications for the D″ region , 2010 .
[39] A. McGaughey,et al. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .
[40] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[41] A. Kulkarni,et al. Tunable thermal response of ZnO nanowires , 2007 .
[42] S. Phillpot,et al. Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation , 2008 .
[43] J. Oitmaa. LATTICE DYNAMICS OF SIMPLE HARMONIC AND ANHARMONIC SHELL MODELS. , 1967 .
[44] Xiaoli Tang,et al. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .