Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods

Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

[1]  C. Ronchi,et al.  Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity. , 1999 .

[2]  Min Zhou,et al.  Size-dependent thermal conductivity of zinc oxide nanobelts , 2006 .

[3]  Cristina H. Amon,et al.  Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .

[4]  A. Yavari,et al.  Effect of external normal and parallel electric fields on 180° ferroelectric domain walls in PbTiO3 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[6]  J. Maier,et al.  Effective masses of electrons in n-type SrTiO3 determined from low-temperature specific heat capacities , 2007 .

[7]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[8]  J. L. Zhang,et al.  Thermoelectric properties of Sr1−xNdxTiO3 ceramics , 2010 .

[9]  G. K. Horton,et al.  Lattice dynamics at high temperature , 1987 .

[10]  James S. Tulenko,et al.  Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .

[11]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[12]  Amelia Carolina Sparavigna,et al.  An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .

[13]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[14]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[15]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[16]  R. Caudron,et al.  Local order and thermal conductivity in yttria-stabilized zirconia. I. Microstructural investigations using neutron diffuse scattering and atomic-scale simulations , 2005 .

[17]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[18]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .

[19]  P. Madden,et al.  Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. , 2009, The Journal of chemical physics.

[20]  Simon R. Phillpot,et al.  Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .

[21]  D. A. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .

[22]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[23]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[24]  S. Pettersson,et al.  Calculation of the thermal conductivity of alkali halide crystals , 1987 .

[25]  M. Gillan,et al.  A computer simulation study of transport coefficients in alkali halides , 1990 .

[26]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[27]  J. Alejandre,et al.  The Wolf method applied to the liquid-vapor interface of water. , 2008, The Journal of chemical physics.

[28]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[29]  J. Gale,et al.  Defects and dislocations in MgO: Atomic scale models of impurity segregation and fast pipe diffusion , 2010 .

[30]  Lars Stixrude,et al.  Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals , 2010 .

[31]  Robin W. Grimes,et al.  Morphology of UO2 , 1999 .

[32]  G. V. Paolini,et al.  The thermal conductivity of defective crystals , 1997 .

[33]  D Fincham,et al.  Shell model simulations by adiabatic dynamics , 1993 .

[34]  K. Udayakumar,et al.  Non-stoichiometry in alkaline earth excess alkaline earth titanates , 1989 .

[35]  Claude Degueldre,et al.  Thermophysical Properties of Inert Matrix Fuels for Actinide Transmutation. , 2003 .

[36]  Baoling Huang,et al.  Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .

[37]  Pettersson Solving the phonon Boltzmann equation with the variational method. , 1991, Physical review. B, Condensed matter.

[38]  N. Koker Thermal conductivity of MgO periclase at high pressure: Implications for the D″ region , 2010 .

[39]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[40]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[41]  A. Kulkarni,et al.  Tunable thermal response of ZnO nanowires , 2007 .

[42]  S. Phillpot,et al.  Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation , 2008 .

[43]  J. Oitmaa LATTICE DYNAMICS OF SIMPLE HARMONIC AND ANHARMONIC SHELL MODELS. , 1967 .

[44]  Xiaoli Tang,et al.  Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .