Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules
暂无分享,去创建一个
[1] Pierre L'Ecuyer,et al. An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..
[2] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[3] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[4] P. L’Ecuyer,et al. On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .
[5] Xiaoqun Wang,et al. Constructing Robust Good Lattice Rules for Computational Finance , 2007, SIAM J. Sci. Comput..
[6] Sandeep Koranne,et al. Boost C++ Libraries , 2011 .
[7] Pierre L'Ecuyer,et al. Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.
[8] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[9] Leszek Plaskota,et al. Monte Carlo and Quasi-Monte Carlo methods 2010 , 2012 .
[10] Andrei Alexandrescu,et al. Modern C++ design: generic programming and design patterns applied , 2001 .
[11] A. Owen,et al. Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .
[12] Pierre L'Ecuyer,et al. Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..
[13] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[14] P. L’Ecuyer,et al. On the distribution of integration error by randomly-shifted lattice rules , 2010 .
[15] David Thomas,et al. The Art in Computer Programming , 2001 .
[16] Pierre L'Ecuyer,et al. Variance bounds and existence results for randomly shifted lattice rules , 2012, J. Comput. Appl. Math..
[17] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[18] Harald Niederreiter,et al. New methods for pseudorandom numbers and pseudorandom vector generation , 1992, WSC '92.
[19] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[20] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[21] Pierre L'Ecuyer,et al. On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules , 2009 .
[22] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[23] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[24] Dirk Nuyens. The construction of good lattice rules and polynomial lattice rules , 2014, Uniform Distribution and Quasi-Monte Carlo Methods.
[25] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[26] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[27] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[28] Pierre L'Ecuyer,et al. Tables of maximally equidistributed combined LFSR generators , 1999, Math. Comput..
[29] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[30] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[31] Ian H. Sloan,et al. Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..
[32] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..
[33] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[34] Dominique Maisonneuve. Recherche et Utilisation des “Bons Treillis.” Programmation et Résultats Numériques , 1972 .
[35] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[36] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[37] Henryk Wozniakowski,et al. Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..
[38] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[39] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[40] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[41] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[42] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[43] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[44] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .