Wireless Inductive Charging for Electrical Vehicules : Electromagnetic Modelling and Interoperability Analysis

Le developpement de la recharge sans contact de batteries comporte divers avantages pour les vehicules electriques. Cette solution est facile a utiliser, robuste et resistante aux intemperies par rapport aux câbles generalement utilises. Le principe est base sur le couplage magnetique entre un emetteur et un recepteur. L'objectif de cette these est de contribuer a proposer une norme pour permettre l’interoperabilite, c’est-a-dire, permettre a plusieurs emetteurs de fonctionner avec des recepteurs de differents fournisseurs. Comme le systeme doit aussi etre tolerant au positionnement et doit respecter les recommandations concernant l’exposition humaine, de nombreuses configurations doivent etre envisagees. Dans cette these, une modelisation avancee et fiable du systeme complet est proposee. La methode des elements finis est exploitee pour determiner les caracteristiques electriques du coupleur inductif (inductances propres et mutuelles, facteur de couplage) dans differentes configurations de positionnement et d’interoperabilite. Ces valeurs permettent le dimensionnement du convertisseur a resonance. A ce stade differentes topologies de compensation sont considerees. Un modele analytique au premier harmonique est mis en œuvre pour comparer les topologies et determiner la frequence de resonance globale du systeme. Un modele circuit du systeme complet est ensuite developpe pour evaluer precisement les courants et tensions. Enfin, un algorithme de regulation base sur une methode MPPT (Maximum Power Point Tracking) est evalue pour le reglage automatique de frequence. A partir des courants calcules a la frequence de resonance pour un point de fonctionnement nominal et grâce au modele elements finis incluant le châssis du vehicule le champ magnetique rayonne est calcule et compare aux valeurs limites recommandees. A chaque etape de la modelisation, la sensibilite du systeme aux parametres de configuration (positionnement, interoperabilite) est analysee. Des mesures effectuees au niveau du coupleur inductif et sur le systeme complet sont aussi utilisees dans l’analyse et permettent de valider le modele

[1]  Omer C. Onar,et al.  A novel wireless power transfer for in-motion EV/PHEV charging , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[2]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[3]  John Boys,et al.  A parallel topology for inductive power transfer power supplies , 2014, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[4]  B. Multon Modèles électriques du transformateur électromagnétique , 1997 .

[5]  Robert W. Erickson,et al.  Modeling of cross-regulation in converters containing coupled inductors , 2000 .

[6]  Alexander D. Poularikas,et al.  Electromagnetics: Classical and modern theory and applications , 1979 .

[7]  J.-P. Ferrieux,et al.  A multi-resonant converter for non-contact charging with electromagnetic coupling , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[8]  J. T. Boys,et al.  Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems , 2011, IEEE Transactions on Power Electronics.

[9]  Kai Strunz,et al.  Chapter 2 Electric Vehicle Battery Technologies , 2012 .

[10]  Takashi Ohira,et al.  Power transfer for a running automobile , 2011, 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications.

[11]  Rafael Alonso,et al.  Analysis of the Mutual Inductance of Planar-Lumped Inductive Power Transfer Systems , 2013, IEEE Transactions on Industrial Electronics.

[12]  Grant A. Covic,et al.  Investigation of Multiple Decoupled Coil Primary Pad Topologies in Lumped IPT Systems for Interoperable Electric Vehicle Charging , 2015, IEEE Transactions on Power Electronics.

[13]  Lionel Pichon,et al.  Electromagnetic model of EV wireless charging systems in view of energy transfer and radiated field control , 2014 .

[14]  José Francisco Sanz Osorio,et al.  Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge , 2009, IEEE Transactions on Industrial Electronics.

[15]  Grant A. Covic,et al.  Development and evaluation of single sided flux couplers for contactless electric vehicle charging , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[16]  Marian P. Kazmierkowski,et al.  Contactless Energy Transfer System With FPGA-Controlled Resonant Converter , 2010, IEEE Transactions on Industrial Electronics.

[17]  Marcello Chiaberge,et al.  Comparative analysis of maximum power point tracking techniques for PV applications , 2013, INMIC.

[18]  Yasuyoshi Kaneko,et al.  A new he core transmitter of a contactless power transfer system that is compatible with circular core receivers and H-shaped core receivers , 2013, 2013 3rd International Electric Drives Production Conference (EDPC).

[19]  D. Kurschner,et al.  Contactless energy transmission systems with improved coil positioning flexibility for high power applications , 2008, 2008 IEEE Power Electronics Specialists Conference.

[20]  Dong Hui,et al.  Research on the electromagnetic radiation of a PCB planar inductor , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[21]  Grant Covic,et al.  Design considerations for a contactless electric vehicle battery charger , 2005, IEEE Transactions on Industrial Electronics.

[22]  Marcel Jufer,et al.  Contactless power transmission: Frequency tuning by a maximum power tracking method , 1997 .

[23]  Grant Covic,et al.  Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems , 2004, IEEE Transactions on Industrial Electronics.

[24]  Aiguo Patrick Hu,et al.  A Frequency Control Method for Regulating Wireless Power to Implantable Devices , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[25]  G. Ombach,et al.  Design and safety considerations of interoperable wireless charging system for automotive , 2014, 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER).

[26]  Samantha Lacroix Modélisation et commande d’une chaine de conversion pour véhicule électrique intégrant la fonction de charge des batteries , 2013 .

[27]  J. W. Kolar,et al.  Optimized magnetic design for inductive power transfer coils , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[28]  K. Brandisky,et al.  Resonant Contactless Energy Transfer With Improved Efficiency , 2009, IEEE Transactions on Power Electronics.

[29]  Aiguo Patrick Hu,et al.  Critical Q analysis of a current-fed resonant converter for ICPT applications , 2000 .

[30]  J. W. Kolar,et al.  Comparative evaluation of control methods for Inductive Power Transfer , 2012, 2012 International Conference on Renewable Energy Research and Applications (ICRERA).

[31]  D. M. Sousa,et al.  Analysis of an inductive charging system for a commercial electric vehicle , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[32]  John T. Boys,et al.  Stability and control of inductively coupled power transfer systems , 2000 .

[33]  Xun Liu,et al.  Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform , 2006, Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting.

[34]  Hunter H. Wu,et al.  A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control , 2012, IEEE Transactions on Industrial Informatics.

[35]  Jong-Moo Lee,et al.  Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances , 2011, IEEE Transactions on Industrial Electronics.

[36]  Chunbo Zhu,et al.  Research on the model of magnetic-resonance based wireless energy transfer system , 2009, 2009 IEEE Vehicle Power and Propulsion Conference.

[37]  Sabri Tosunoglu,et al.  State of the Art in Inductive Charging for Electronic Appliances and its Future in Transportation , 2012 .

[38]  J. W. Kolar,et al.  The η-α-Pareto front of inductive power transfer coils , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[39]  I. Batarseh,et al.  Operation Mode Analysis and Peak Gain Approximation of the LLC Resonant Converter , 2012, IEEE Transactions on Power Electronics.

[40]  Gérard Meunier,et al.  Convertisseurs à Double Résonance pour l'Alimentation de Transformateurs Faiblement Couplés , 2010 .

[41]  F. Costa,et al.  Gate driving of high power IGBT by wireless transmission , 2006, 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference.

[42]  Li Ran,et al.  Contactless charging for electric vehicles with a large air gap , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[43]  Ivan Müller,et al.  Power Transfer With an Inductive Link and Wireless Tuning , 2013, IEEE Transactions on Instrumentation and Measurement.

[44]  Grant Covic,et al.  Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems , 2013, IEEE Transactions on Industrial Electronics.

[45]  S.Y.R. Hui,et al.  A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment , 2004, IEEE Transactions on Power Electronics.

[46]  A. Lindemann,et al.  Analysis and Design of a Contactless Energy Transmission System with Flexible Inductor Positioning for Automated Guided Vehicles , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[47]  Hongwen He,et al.  Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach , 2011 .

[48]  Ekaitz Goenaga Conception d’alimentations de puissance d’actionneurs piézo-électriques, avec et sans contact électrique, pour la génération des vibrations mécaniques , 2013 .

[49]  A.P. Hu,et al.  Wireless Power Supply for Implantable Biomedical Device Based on Primary Input Voltage Regulation , 2007, 2007 2nd IEEE Conference on Industrial Electronics and Applications.

[50]  Alanson P. Sample,et al.  Analysis , Experimental Results , and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer , 2010 .

[51]  Rachid Laouamer Chargeur de Batteries à Couplage Inductif pour Véhicule Electrique , 1998 .

[52]  N. Ida,et al.  Electromagnetics and calculation of fields , 1992 .

[53]  Carlos A. Canesin,et al.  Comparative analysis of MPPT techniques for PV applications , 2011, 2011 International Conference on Clean Electrical Power (ICCEP).

[54]  Aiguo Patrick Hu,et al.  Experimental Study of a TET System for Implantable Biomedical Devices , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[55]  U. Madawala,et al.  A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems , 2011, IEEE Transactions on Industrial Electronics.

[56]  Luis Angel Barragan,et al.  A Versatile Power Electronics Test-Bench Architecture Applied to Domestic Induction Heating , 2011, IEEE Transactions on Industrial Electronics.

[57]  H. Sakamoto,et al.  A non-contact energy transferring system for an electric vehicle-charging system based on recycled products , 2006 .

[58]  Raimo Sepponen,et al.  A Biosignal Instrumentation System Using Capacitive Coupling for Power and Signal Isolation , 2007, IEEE Transactions on Biomedical Engineering.

[59]  Xun Liu,et al.  Mutual inductance calculation of movable planar coils on parallel surfaces , 2008, 2008 IEEE Power Electronics Specialists Conference.

[60]  Peter Wolfs,et al.  Converter selection for electric vehicle charger systems with a high-frequency high-power link , 1993, Proceedings of IEEE Power Electronics Specialist Conference - PESC '93.