Drugs and Drug Candidates from Marine Sources: An Assessment of the Current “State of Play”

Abstract The potential of the marine environment to produce candidate compounds (structures) as leads to, or even direct drugs from, has been actively discussed for the last 50 or so years. Over this time frame, several compounds have led to drugs, usually in the area of cancer (due to funding sources). This review is designed to show where there have been successes, but also to show that in a number of disease areas, there are structures originally isolated from marine invertebrates and free-living microbes that have potential, but will need to be “adopted” by pharmaceutical houses in order to maximize their potential.

[1]  E. Carreira,et al.  Total Synthesis of Bryostatin 1 , 1999, Synfacts.

[2]  D. Sherman,et al.  Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. , 2015, Environmental microbiology.

[3]  V. Paul,et al.  Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance , 2015, Journal of phycology.

[4]  Pieter C Dorrestein,et al.  Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. , 2015, Journal of natural products.

[5]  J. Pelletier,et al.  Targeting the eIF4A RNA helicase as an anti-neoplastic approach. , 2015, Biochimica et biophysica acta.

[6]  A. Stopeck,et al.  EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB-Expressing Breast Cancer. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Hou‐Wen Lin,et al.  Cytotoxic Bryostatin Derivatives from the South China Sea Bryozoan Bugula neritina. , 2015, Journal of natural products.

[8]  T. Ng,et al.  Antibacterial products of marine organisms , 2015, Applied Microbiology and Biotechnology.

[9]  N. Sonenberg,et al.  Targeting the translation machinery in cancer , 2015, Nature Reviews Drug Discovery.

[10]  Pieter C Dorrestein,et al.  Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta. , 2015, Journal of natural products.

[11]  R. Lewis CHAPTER 9:Case Study 1: Development of the Analgesic Drugs Prialt® and Xen2174 from Cone Snail Venoms , 2015 .

[12]  J. McIntosh,et al.  CHAPTER 6:The Molecular Diversity of Conoidean Venom Peptides and their Targets: From Basic Research to Therapeutic Applications , 2015 .

[13]  G. King,et al.  CHAPTER 2:The Structural Universe of Disulfide-Rich Venom Peptides , 2015 .

[14]  G. King Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics , 2015 .

[15]  Suzanne F. Jones,et al.  Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. , 2014, Journal of Clinical Oncology.

[16]  P. Hwu,et al.  Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  F. Gago,et al.  334 Aplidin: first in class compound targeting EEF1A in tumor cells , 2014 .

[18]  C. Galmarini,et al.  502 MI130004, an antibody–drug conjugate including a novel payload of marine origin: Evidences of in vivo activity , 2014 .

[19]  C. Galmarini,et al.  345 Interaction of plitidepsin with eEF1A in living tumor cells , 2014 .

[20]  C. Galmarini,et al.  58 Pipecolidepsin A, Stellatolide A and Irvalec: New cyclodepsipeptides of marine origin with antitumor activity , 2014 .

[21]  M. Hidalgo,et al.  55 Low, frequent doses of PM060184 induce remarkable in vivo antitumor activity , 2014 .

[22]  L. Weiner,et al.  The development of immunoconjugates for targeted cancer therapy , 2014, Nature Reviews Clinical Oncology.

[23]  Judit Tulla-Puche Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid‐Phase Total Synthesis, and Full Structural Assignment of Stellatolide A. , 2014 .

[24]  P. Polakis,et al.  1598PTRANSLATIONAL PKPD OF DNIB0600A, AN ANTI-NAPI2B-VC-MMAE ADC IN OVARIAN AND NSCLC CANCERS. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[25]  M. Morris,et al.  A phase I study of DSTP3086S, an antibody-drug conjugate (ADC) targeting STEAP-1, in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). , 2014 .

[26]  Judit Tulla-Puche,et al.  Stellatolides, a new cyclodepsipeptide family from the sponge Ecionemia acervus: isolation, solid-phase total synthesis, and full structural assignment of stellatolide A. , 2014, Journal of the American Chemical Society.

[27]  P. Allavena,et al.  Trabectedin, a drug acting on both cancer cells and the tumour microenvironment , 2014, British Journal of Cancer.

[28]  D. Craik,et al.  Discovery, synthesis, and structure-activity relationships of conotoxins. , 2014, Chemical reviews.

[29]  I. Barasoain,et al.  PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. , 2014, Biochemical pharmacology.

[30]  Christian Rinke,et al.  An environmental bacterial taxon with a large and distinct metabolic repertoire , 2014, Nature.

[31]  A. Forero,et al.  Management of Metastatic Breast Cancer with Second-Generation Antibody–Drug Conjugates: Focus on Glembatumumab Vedotin (CDX-011, CR011-vcMMAE) , 2014, BioDrugs.

[32]  Ambrose Furey,et al.  Tetrodotoxin: Chemistry, Toxicity, Source, Distribution and Detection , 2014, Toxins.

[33]  P. Allavena,et al.  Trabectedin and Plitidepsin: Drugs from the Sea that Strike the Tumor Microenvironment , 2014, Marine drugs.

[34]  F. Reyes,et al.  Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa. , 2014, Journal of natural products.

[35]  D. Newman,et al.  Marine-Sourced Anti-Cancer and Cancer Pain Control Agents in Clinical and Late Preclinical Development † , 2014, Marine drugs.

[36]  Pieter C Dorrestein,et al.  Quantitative molecular networking to profile marine cyanobacterial metabolomes , 2013, The Journal of Antibiotics.

[37]  B. Moore,et al.  Challenges and triumphs to genomics-based natural product discovery , 2014, Journal of Industrial Microbiology & Biotechnology.

[38]  Sanjiv S Gambhir,et al.  A 18F-labeled saxitoxin derivative for in vivo PET-MR imaging of voltage-gated sodium channel expression following nerve injury. , 2013, Journal of the American Chemical Society.

[39]  P. Allavena,et al.  Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104) , 2013, International journal of cancer.

[40]  D. Montefiori,et al.  Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models , 2013, Antimicrobial Agents and Chemotherapy.

[41]  F. Gago,et al.  Inhibitory effects of marine‐derived DNA‐binding anti‐tumour tetrahydroisoquinolines on the Fanconi anaemia pathway , 2013, British journal of pharmacology.

[42]  D. Newman,et al.  Microbial natural products: molecular blueprints for antitumor drugs , 2013, Journal of Industrial Microbiology & Biotechnology.

[43]  C. Schroeder,et al.  Spinal actions of ω‐conotoxins, CVID, MVIIA and related peptides in a rat neuropathic pain model , 2013, British journal of pharmacology.

[44]  Melvin J. Yu,et al.  From micrograms to grams: scale-up synthesis of eribulin mesylate. , 2013, Natural product reports.

[45]  I. Barasoain,et al.  New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. , 2013, ACS chemical biology.

[46]  F. Reyes,et al.  Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. , 2013, Journal of the American Chemical Society.

[47]  M. Isobe,et al.  Synthesis of tetrodotoxin, a classic but still fascinating natural product. , 2013, Chemical record.

[48]  C. Higano,et al.  A phase I study of the safety and pharmacokinetics of DSTP3086S, an anti-STEAP1 antibody-drug conjugate (ADC), in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). , 2013 .

[49]  David S. Shames,et al.  A phase I study of the safety and pharmacokinetics of DNIB0600A, an anti-NaPi2b antibody-drug-conjugate (ADC), in patients (pts) with non− small cell lung cancer (NSCLC) and platinum-resistant ovarian cancer (OC). , 2013 .

[50]  P. Blumberg,et al.  Biological profile of the less lipophilic and synthetically more accessible bryostatin 7 closely resembles that of bryostatin 1. , 2013, ACS chemical biology.

[51]  Jeffrey T. Lau,et al.  DCDT2980S, an Anti-CD22-Monomethyl Auristatin E Antibody–Drug Conjugate, Is a Potential Treatment for Non-Hodgkin Lymphoma , 2013, Molecular Cancer Therapeutics.

[52]  R. Dixit,et al.  Cyanobacteria: potential candidates for drug discovery , 2013, Antonie van Leeuwenhoek.

[53]  M. Schnaderbeck,et al.  Process Development of Halaven®: Synthesis of the C1–C13 Fragment from d-(–)-Gulono-1,4-lactone , 2013, Synlett.

[54]  M. Kubota,et al.  Process Development of Halaven®: Synthesis of the C14–C35 Fragment via Iterative Nozaki–Hiyama–Kishi Reaction–Williamson Ether Cyclization , 2013, Synlett.

[55]  M. Kubota,et al.  Commercial Manufacture of Halaven®: Chemoselective Transformations En Route to Structurally Complex Macrocyclic Ketones , 2013, Synlett.

[56]  B. Löwenberg Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. , 2013, Blood.

[57]  A. Newland,et al.  Brentuximab Vedotin: A CD30‐Directed Antibody‐Cytotoxic Drug Conjugate , 2013, Pharmacotherapy.

[58]  E. Moczydlowski The molecular mystique of tetrodotoxin. , 2012, Toxicon : official journal of the International Society on Toxinology.

[59]  Y. Takebe,et al.  Antiviral Lectins from Red and Blue-Green Algae Show Potent In Vitro and In Vivo Activity against Hepatitis C Virus , 2012, PloS one.

[60]  Jeffrey T. Lau,et al.  DCDT 2980 S , an anti-CD 22-Monomethyl Auristatin E antibody-drug conjugate , is a potential treatment for non-Hodgkins Lymphoma , 2013 .

[61]  M. Tsuda,et al.  Salinisporaarenicola from temperate marine sediments: new intra-species variations and atypical distribution of secondary metabolic genes , 2013, Antonie van Leeuwenhoek.

[62]  J. Tibbitts,et al.  Pharmacokinetic Considerations for Antibody Drug Conjugates , 2012, Pharmaceutical Research.

[63]  M. Marsden,et al.  Designed, Synthetically Accessible Bryostatin Analogues Potently Induce Activation of Latent HIV Reservoirs in vitro , 2012, Nature chemistry.

[64]  J. Tabernero,et al.  First-in-man phase I trial of two schedules of the novel synthetic tetrahydroisoquinoline alkaloid PM00104 (Zalypsis) in patients with advanced solid tumours , 2012, British Journal of Cancer.

[65]  A. Plunkett,et al.  The application of genomic and molecular data in the treatment of chronic cancer pain , 2012, Journal of surgical oncology.

[66]  K. Haddley Brentuximab vedotin: its role in the treatment of anaplastic large cell and Hodgkin's lymphoma. , 2012, Drugs of today.

[67]  M. A. Tejada,et al.  Tetrodotoxin (TTX) as a Therapeutic Agent for Pain , 2012, Marine drugs.

[68]  Bradley S Moore,et al.  Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. , 2012, Chemistry & biology.

[69]  Jun Yu Li,et al.  Gpnmb/osteoactivin, an attractive target in cancer immunotherapy. , 2012, Neoplasma.

[70]  P. Wender,et al.  Function Oriented Synthesis: Preparation and Initial Biological Evaluation of New A-Ring-Modified Bryologs. , 2011, Tetrahedron.

[71]  Anna Lechner,et al.  Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. , 2011, Chemistry & biology.

[72]  D. Kingston,et al.  HTI-286 (Taltobulin), A Synthetic Analog of the Antimitotic Natural Product Hemiasterlin , 2011 .

[73]  D. Kingston,et al.  The Dolastatins: Novel Antitumor Agents from Dolabella auricularia , 2011 .

[74]  D. Newman,et al.  Anticancer Agents from Natural Products, Second Edition , 2011 .

[75]  F. Theil,et al.  Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. , 2011, Bioconjugate chemistry.

[76]  K. Hale,et al.  Total synthesis of bryostatin 1: a short route. , 2011, Angewandte Chemie.

[77]  B. Trost,et al.  Total syntheses of bryostatins: synthesis of two ring-expanded bryostatin analogues and the development of a new-generation strategy to access the C7-C27 fragment. , 2011, Chemistry.

[78]  B. Trost,et al.  Atom-economic and stereoselective syntheses of the ring a and B subunits of the bryostatins. , 2011, Chemistry.

[79]  J. Kalaitzis,et al.  On the origins and biosynthesis of tetrodotoxin. , 2011, Aquatic toxicology.

[80]  A. Escargueil,et al.  Trabectedin and Its C Subunit Modified Analogue PM01183 Attenuate Nucleotide Excision Repair and Show Activity toward Platinum-Resistant Cells , 2011, Molecular Cancer Therapeutics.

[81]  Vishal A. Verma,et al.  Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity , 2011, Proceedings of the National Academy of Sciences.

[82]  Melvin J. Yu,et al.  Novel second generation analogs of eribulin. Part I: Compounds containing a lipophilic C32 side chain overcome P-glycoprotein susceptibility. , 2011, Bioorganic & medicinal chemistry letters.

[83]  Melvin J. Yu,et al.  Novel second generation analogs of eribulin. Part II: Orally available and active against resistant tumors in vivo. , 2011, Bioorganic & medicinal chemistry letters.

[84]  Henry H Nguyen,et al.  Bioinspired total synthesis and human proteasome inhibitory activity of (-)-salinosporamide A, (-)-homosalinosporamide A, and derivatives obtained via organonucleophile promoted bis-cyclizations. , 2011, The Journal of organic chemistry.

[85]  Micheal C. Wilson,et al.  The Discovery of Salinosporamide K from the Marine Bacterium “Salinispora pacifica” by Genome Mining Gives Insight into Pathway Evolution , 2011, Chembiochem : a European journal of chemical biology.

[86]  S. Ansell Brentuximab vedotin: delivering an antimitotic drug to activated lymphoma cells , 2011, Expert opinion on investigational drugs.

[87]  C. Galmarini,et al.  Ecteinascidin-743 (Yondelis®), Aplidin®, and Irvalec® , 2011 .

[88]  D. Craik,et al.  Conopeptides as novel options for pain management , 2011 .

[89]  G. Lim-Fong,et al.  Bryostatins: biological context and biotechnological prospects. , 2010, Current opinion in biotechnology.

[90]  Juan A. Bueren-Calabuig,et al.  PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti‐tumour activity , 2010, British journal of pharmacology.

[91]  Roberto Danovaro,et al.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem , 2010 .

[92]  C. Duarte,et al.  What lies underneath: Conserving the oceans’ genetic resources , 2010, Proceedings of the National Academy of Sciences.

[93]  David J Craik,et al.  The engineering of an orally active conotoxin for the treatment of neuropathic pain. , 2010, Angewandte Chemie.

[94]  David J Newman,et al.  The odyssey of marine pharmaceuticals: a current pipeline perspective. , 2010, Trends in pharmacological sciences.

[95]  K. Hale,et al.  New approaches to the total synthesis of the bryostatin antitumor macrolides. , 2010, Chemistry, an Asian journal.

[96]  M. Hallett,et al.  Glycoprotein Nonmetastatic B Is an Independent Prognostic Indicator of Recurrence and a Novel Therapeutic Target in Breast Cancer , 2010, Clinical Cancer Research.

[97]  Leslie Wilson,et al.  Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. , 2010, Biochemistry.

[98]  C. Schroeder,et al.  chi-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. , 2009, Journal of medicinal chemistry.

[99]  D. Urabe,et al.  New syntheses of E7389 C14-C35 and halichondrin C14-C38 building blocks: reductive cyclization and oxy-Michael cyclization approaches. , 2009, Journal of the American Chemical Society.

[100]  Haibing Guo,et al.  New syntheses of E7389 C14-C35 and halichondrin C14-C38 building blocks: double-inversion approach. , 2009, Journal of the American Chemical Society.

[101]  Y. Kishi,et al.  Second generation synthesis of C27-C35 building block of E7389, a synthetic halichondrin analogue. , 2009, Organic letters.

[102]  Juan A. Bueren-Calabuig,et al.  Molecular pharmacology and antitumor activity of Zalypsis in several human cancer cell lines. , 2009, Biochemical pharmacology.

[103]  A. Phillips,et al.  The halichondrins and E7389. , 2009, Chemical reviews.

[104]  C. Galmarini,et al.  The mechanism of action of plitidepsin. , 2009, Current opinion in investigational drugs.

[105]  David C. Montefiori,et al.  Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component , 2009, Proceedings of the National Academy of Sciences.

[106]  A. Phillips,et al.  A total synthesis of norhalichondrin B. , 2009, Angewandte Chemie.

[107]  K. S. Lam,et al.  Discovery and development of the anticancer agent salinosporamide A (NPI-0052). , 2009, Bioorganic & medicinal chemistry.

[108]  Andrés Francesch,et al.  Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. , 2009, Natural product reports.

[109]  M. Jordan,et al.  Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase , 2008, Molecular Cancer Therapeutics.

[110]  P. Blumberg,et al.  Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: bryostatin look-alikes that mimic phorbol ester function. , 2008, Journal of the American Chemical Society.

[111]  M. Jordan,et al.  How do microtubule-targeted drugs work? An overview. , 2007, Current cancer drug targets.

[112]  A. Escargueil,et al.  Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743 , 2007, Proceedings of the National Academy of Sciences.

[113]  A. Wlodawer,et al.  Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine , 2007, Protein science : a publication of the Protein Society.

[114]  M. Jeffers,et al.  Treatment parameters modulating regression of human melanoma xenografts by an antibody–drug conjugate (CR011-vcMMAE) targeting GPNMB , 2007, Cancer Chemotherapy and Pharmacology.

[115]  Damon L. Meyer,et al.  CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[116]  Damon L. Meyer,et al.  Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. , 2006, Bioconjugate chemistry.

[117]  チャールズ ダブリュー. アイゲンブロット,,et al.  Cysteine engineered antibodies and conjugates , 2005 .

[118]  M. Jordan,et al.  The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth , 2005, Molecular Cancer Therapeutics.

[119]  Melvin J. Yu,et al.  Discovery of E7389, a Fully Synthetic Macrocyclic Ketone Analog of Halichondrin B , 2005 .

[120]  J. Srirangam,et al.  The Dolastatins: Novel Antitumor Agents from Dolabella auricularia , 2005 .

[121]  G. Faircloth,et al.  Ecteinascidin 743 (ET-743; Yondelis™), Aplidin, and Kahalalide F , 2005 .

[122]  D. Kingston,et al.  Anticancer Agents from Natural Products , 2005 .

[123]  Barry R O'Keefe,et al.  Isolation and Characterization of Griffithsin, a Novel HIV-inactivating Protein, from the Red Alga Griffithsia sp.* , 2005, Journal of Biological Chemistry.

[124]  S. D. Rosa,et al.  Antiviral agents from a gorgonian,Eunicella cavolini , 1984, Experientia.

[125]  K. Gustafson,et al.  Structure of bryostatin 20: a symbiont-produced chemical defense for larvae of the host bryozoan, Bugula neritina. , 2004, Journal of natural products.

[126]  X. Yao,et al.  Studies on Antineoplastic Constituents from Marine Bryozoan Bugula neritina Inhabiting South China Sea: Isolation and Structural Elucidation of a Novel Macrolide , 2004 .

[127]  K. Suwanborirux,et al.  Chemistry of renieramycins. Part 6: Transformation of renieramycin M into jorumycin and renieramycin J including oxidative degradation products, mimosamycin, renierone, and renierol acetate ☆ , 2004 .

[128]  David John Adams,et al.  Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of action, Na+ dependence, and structure-activity relationship. , 2003, The Journal of biological chemistry.

[129]  Mark Frigerio,et al.  The chemistry and biology of the bryostatin antitumour macrolides. , 2002, Natural product reports.

[130]  M. Joullié,et al.  Natural products as probes of cell biology: 20 years of didemnin research , 2002, Medicinal research reviews.

[131]  V. Paul,et al.  Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. , 2001, Journal of natural products.

[132]  A. Fontana,et al.  A New Antitumor Isoquinoline Alkaloid from the Marine Nudibranch Jorunna funebris , 2000 .

[133]  D J Newman,et al.  The influence of natural products upon drug discovery. , 2000, Natural product reports.

[134]  R. G. Hughes,et al.  Structure−Activity Relationships of the Didemnins1,2 , 1996 .

[135]  R. G. Hughes,et al.  Structure--activity relationships of the didemnins. , 1996, Journal of medicinal chemistry.

[136]  Craig J. Forsyth,et al.  Total synthesis of halichondrin B and norhalichondrin B , 1992 .

[137]  C. Gaillard Deep-Sea Biology. A natural history of organims at the deep-sea floor , 1992 .

[138]  Suckling Cj,et al.  Chemical approaches to the discovery of new drugs. , 1991 .

[139]  C. Suckling Chemical approaches to the discovery of new drugs. , 1991, Science progress.

[140]  G. Pettit The bryostatins. , 1991, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles.

[141]  Frank Koehn,et al.  Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata , 1990 .

[142]  Paul A. Keifer,et al.  Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata , 1990 .

[143]  A. Imbesi Drugs from the sea. , 1988, Pharmacological research communications.

[144]  J. McIntosh,et al.  Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. , 1987, Biochemistry.

[145]  W R Gray,et al.  Peptide neurotoxins from fish-hunting cone snails. , 1985, Science.

[146]  L. R. Worthen,et al.  Food-drugs from the sea : proceedings , 1970 .

[147]  H. Hagiwara,et al.  Synthesis of nereistoxin and related compounds. II. , 1965, Chemical & pharmaceutical bulletin.

[148]  Y. Oka,et al.  SYNTHESIS OF NEREISTOXIN AND RELATED COMPOUNDS. I. , 1965, Chemical & pharmaceutical bulletin.

[149]  W. Bergmann,et al.  CONTRIBUTIONS TO THE STUDY OF MARINE PRODUCTS. XXXIX. THE NUCLEOSIDES OF SPONGES. III.1 SPONGOTHYMIDINE AND SPONGOURIDINE2 , 1955 .

[150]  Robert J. Feeney,et al.  CONTRIBUTIONS TO THE STUDY OF MARINE PRODUCTS. XXXII. THE NUCLEOSIDES OF SPONGES. I.1 , 1951 .

[151]  Robert J. Feeney,et al.  THE ISOLATION OF A NEW THYMINE PENTOSIDE FROM SPONGES1 , 1950 .