Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals

Tb-doped MgGa2O4 single crystals (0.3, 1, 3, and 5%) were synthesized by the floating zone method. The synthesized crystals had a single phase of MgGa2O4 confirmed by X-ray diffraction and high transparency in the visible wavelength. Tb3+ acted as a luminescence center in both photoluminescence (PL) and thermally stimulated luminescence (TSL) processes. In the TSL dose response functions, the minimum detectable dose of the crystals was 0.01 mGy, which was comparable with some commercial dosimetric materials. In the X-ray imaging test taken based on TSL, the spatial resolution of the 1% Tb-doped crystal was estimated to be 8.90 LP/mm (56.2 μm).

[1]  D. Nakauchi,et al.  Synthesis of Tb-doped SiO2 glasses by spark plasma sintering method and evaluation of photoluminsecence and thermally stimulated luminescence properties , 2022, Radiation Physics and Chemistry.

[2]  D. Nakauchi,et al.  Effect of Tm doping on photoluminescence, scintillation, and thermally stimulated luminescence properties of MgAl2O4 single crystals , 2022, Journal of Luminescence.

[3]  D. Nakauchi,et al.  Dosimetric properties of Dy-doped LiCaPO4 , 2022, Optik.

[4]  D. Nakauchi,et al.  Photoluminescence, scintillation, and dosimetric properties of Tb-doped Mg2SiO4 single crystals , 2022, Journal of Materials Science: Materials in Electronics.

[5]  D. Nakauchi,et al.  TSL and OSL Properties of Cu-doped CaF2 Ceramics Prepared by Spark Plasma Sintering , 2022, Sensors and Materials.

[6]  D. Nakauchi,et al.  Photoluminescence and Scintillation Properties of Ce-, Pr-, and Tb-doped (Gd,Lu)2Hf2O7 Crystals , 2022, Sensors and Materials.

[7]  A. Goldstein,et al.  Novel transparent MgGa2O4 and Ni2+-doped MgGa2O4 ceramics , 2022, Journal of Advanced Ceramics.

[8]  D. Nakauchi,et al.  Photoluminescence and Scintillation Properties of Tb:GdTaO4 Crystals , 2021, Sensors and materials.

[9]  T. Takata,et al.  Thermal Neutron Measurements Using Thermoluminescence Phosphor Cr-doped Al2O3 and Cd Neutron Converter , 2021, Sensors and Materials.

[10]  D. Nakauchi,et al.  Thermally stimulated luminescence properties of Dy-doped MgAl2O4 single crystals , 2021 .

[11]  B. Mothudi,et al.  Luminescence dynamics of MgGa2O4 prepared by solution combustion synthesis , 2020 .

[12]  D. Nakauchi,et al.  Scintillation and dosimetric properties of Ce-doped MgAl2O4 single crystals , 2020 .

[13]  D. Nakauchi,et al.  Dosimetric properties of Tb-doped MgAl2O4 single crystals , 2020, Japanese Journal of Applied Physics.

[14]  D. Nakauchi,et al.  Optical, scintillation, and dosimetric properties of Mn-doped MgAl2O4 single crystals , 2020, Journal of Materials Science: Materials in Electronics.

[15]  N. Kucuk,et al.  Thermoluminescence properties of Tb doped Mg2SiO4 after beta irradiation , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[16]  T. Yanagida,et al.  Ionizing-radiation-induced storage-luminescence for dosimetric applications , 2019, Journal of Luminescence.

[17]  B. Jiang,et al.  A self-activated MgGa2O4 for persistent luminescence phosphor , 2018, Journal of Applied Physics.

[18]  A. Luchechko,et al.  TL and OSL properties of Mn2+-doped MgGa2O4 phosphor , 2018 .

[19]  V. Taxak,et al.  Synthesis and luminescent properties of Tb 3+ doped BaLa 2 ZnO 5 nanoparticles , 2018 .

[20]  Y. Koba,et al.  Applicability of two-dimensional thermoluminescence slab dosimeter based on Al2O3:Cr for the quality assurance of robotic radiosurgery , 2017 .

[21]  S. Kasap,et al.  Aluminum Nitride Ceramic as an Optically Stimulable Luminescence Dosimeter Plate , 2016 .

[22]  S. Gupta,et al.  An Insight into the Various Defects-Induced Emission in MgAl2O4 and Their Tunability with Phase Behavior: Combined Experimental and Theoretical Approach , 2016 .

[23]  D. Nakauchi,et al.  Photochromism and Thermally and Optically Stimulated Luminescences of AlN Ceramic Plate for UV Sensing , 2016 .

[24]  P. Townsend,et al.  Ion size effects on thermoluminescence of terbium and europium doped magnesium orthosilicate , 2015 .

[25]  M. Albrecht,et al.  MgGa2O4 as a new wide bandgap transparent semiconducting oxide: growth and properties of bulk single crystals , 2015 .

[26]  T. Yanagida,et al.  Dosimeter properties of AlN , 2013 .

[27]  S. Sharma,et al.  Red persistent luminescence in MgGa2O4 : Cr3+; a new phosphor for in vivo imaging , 2013 .

[28]  Kenichi Watanabe,et al.  Development of a micro-size dosimeter using an optical fiber probe based on photostimulable phosphorescence , 2013 .

[29]  Yong‐Ill Lee,et al.  Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs , 2013 .

[30]  Hai Liu,et al.  Photoluminescent properties of Eu3+ and Dy3+ ions doped MgGa2O4 phosphors , 2013 .

[31]  M. Malinowski,et al.  Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals , 2012 .

[32]  C Stoeckl,et al.  Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates. , 2012, The Review of scientific instruments.

[33]  S. McKeever Optically stimulated luminescence: A brief overview , 2011 .

[34]  B. Bhatt,et al.  Thermoluminescence, optically stimulated luminescence and radiophotoluminescence dosimetry: An overall perspective , 2011, Radiation Protection and Environment.

[35]  B. Qiu,et al.  Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors , 2009 .

[36]  X. Jing,et al.  Luminescence of Native Defects in MgGa2O4 , 2009 .

[37]  Seyed Mahmoud Hosseini,et al.  Structural, electronic and optical properties of spinel MgAl2O4 oxide , 2008 .

[38]  L A R da Rosa,et al.  Radiotherapy dosimetry using a commercial OSL system. , 2008, Medical physics.

[39]  H. Nanto,et al.  X-ray imaging plate using CsBr:Eu phosphors for computed radiography , 2007 .

[40]  A. Bos Theory of thermoluminescence , 2006 .

[41]  J. Yao,et al.  Crystal structure and photoluminescence of Tb3+ doped Y3GaO6 , 2006 .

[42]  K. Cheah,et al.  Synthesis and photoluminescence of Eu3+- or Tb3+ -doped Mg2SiO4 nanoparticles prepared by a combined novel approach , 2006 .

[43]  M. Kitaura,et al.  Luminescence properties and afterglow in spinel crystals doped with trivalent Tb ions , 2003 .

[44]  K. Sickafus,et al.  Defects and radiation induced electronic processes in magnesium aluminate spinel of different compositions , 2002 .

[45]  Chao‐Nan Xu,et al.  Strong Mechanoluminescence from UV-Irradiated Spinels of ZnGa2O4:Mn and MgGa2O4:Mn , 2000 .

[46]  A. Bos,et al.  The Analysis of Thermoluminescent Glow Peaks in CaF2:Tm (TLD-300) , 1991 .

[47]  F. Waldner,et al.  A direct determination of cation disorder in MgAl2O4 spinel by ESR , 1972 .