A construction of attracting periodic orbits for some classical third-order iterative methods

We use a family of root-finding iterative methods for finding roots of nonlinear equations. We present a procedure for constructing polynomials so that superattracting periodic orbits of any prescribed period occur when these methods are applied. This family includes Chebyshev's method, Halley's method, the super-Halley method, and the c-methods, as particular cases.

[1]  J. Milnor,et al.  Dynamics in One Complex Variable: Introductory Lectures , 2000 .

[2]  Christian Henriksen,et al.  On König's root-finding algorithms* , 2003 .

[3]  J. M. Guti errez,et al.  An acceleration of Newton's method: Super-Halley method q , 2001 .

[4]  Heinz-Otto Peitgen,et al.  Newton's method and dynamical systems , 1989 .

[5]  Ioannis K. Argyros,et al.  Results on the Chebyshev method in banach spaces , 1993 .

[6]  E. Vrscay,et al.  Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions , 1987 .

[7]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[8]  Cayley Desiderata and Suggestions: No. 3.The Newton-Fourier Imaginary Problem , 1879 .

[9]  José Antonio Ezquerro,et al.  Chebyshev-like methods and quadratic equations , 1999 .

[10]  Edward R Vrscay Julia sets and mandelbrot-like sets associated with higher order Schro¨der rational iteration functions: A computer assisted study , 1986 .

[11]  Antonio Marquina,et al.  Recurrence relations for rational cubic methods II: The Chebyshev method , 1991, Computing.

[12]  Ioannis K. Argyros,et al.  A local convergence theorem for the super-halley method in a Banach space , 1994 .

[13]  J. M. Gutiérrez,et al.  Geometric constructions of iterative functions to solve nonlinear equations , 2003 .

[14]  Dennis Sullivan,et al.  On the iteration of a rational function: Computer experiments with Newton's method , 1983 .

[15]  Miguel Ángel Hernández,et al.  An acceleration of Newton's method: Super-Halley method , 2001, Appl. Math. Comput..

[16]  Antonio Marquina,et al.  Recurrence relations for rational cubic methods I: The Halley method , 1990, Computing.

[17]  Gareth E. Roberts,et al.  Newton's versus Halley's Method: a Dynamical Systems Approach , 2004, Int. J. Bifurc. Chaos.

[18]  J. M. Gutiérrez,et al.  A family of Chebyshev-Halley type methods in Banach spaces , 1997, Bulletin of the Australian Mathematical Society.

[19]  M. A. Salanova,et al.  A family of chebyshev-halley type methods , 1993 .