Estimation of tropospheric wet refractivity using tomography method and artificial neural networks in Iranian case study

[1]  M. O. Selbesoglu,et al.  Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data , 2020 .

[2]  Yibin Yao,et al.  A new troposphere tomography algorithm with a truncation factor model (TFM) for GNSS networks , 2019, GPS Solutions.

[3]  Joao Catalao,et al.  4D wet refractivity estimation in the atmosphere using GNSS tomography initialized by radiosonde and AIRS measurements: results from a 1-week intensive campaign , 2018, GPS Solutions.

[4]  Yazdan Amerian,et al.  Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements , 2017 .

[5]  Behzad Voosoghi,et al.  Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study , 2017, GPS Solutions.

[6]  Witold Rohm,et al.  Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data , 2017, Journal of Geodesy.

[7]  Yibin Yao,et al.  A novel, optimized approach of voxel division for water vapor tomography , 2017, Meteorology and Atmospheric Physics.

[8]  Ali Mohammadzadeh,et al.  Efficiency of artificial neural networks in map of total electron content over Iran , 2016, Acta Geodaetica et Geophysica.

[9]  Mir Reza Ghaffari Razin,et al.  Development and analysis of 3D ionosphere modeling using base functions and GPS data over Iran , 2016, Acta Geodaetica et Geophysica.

[10]  D. Zheng,et al.  Research on regional zenith tropospheric delay based on neural network technology , 2015 .

[11]  Z. Adavi,et al.  4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran , 2014, Meteorology and Atmospheric Physics.

[12]  Zhizhao Liu,et al.  Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model , 2014, Journal of Geodesy.

[13]  J. Wickert,et al.  GPS tomography: validation of reconstructed 3-D humidity fields with radiosonde profiles , 2013 .

[14]  V. Cachorro,et al.  Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations , 2010 .

[15]  Michael R. Lyu,et al.  A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training , 2007, Appl. Math. Comput..

[16]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[17]  S. Skone,et al.  Troposphere Modeling in a Regional GPS Network , 2005 .

[18]  Lu Daren,et al.  Retrieval of water vapor profiles with radio occultation measurements using an artificial neural network , 2005 .

[19]  Jan M. Johansson,et al.  Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers , 1998 .

[20]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[21]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[22]  Witold Rohm,et al.  THE CONCEPT OF THE NEAR REAL TIME ATMOSPHERE MODEL BASED ON THE GNSS AND THE METEOROLOGICAL DATA FROM THE ASG-EUPOS REFERENCE STATIONS , 2010 .

[23]  Witold Rohm,et al.  THE NEAR REAL TIME ATMOSPHERE MODEL BASED ON THE GNSS AND THE METEOROLOGICAL DATA FROM THE GROUND BASE AUGMENTATION SYSTEM ASG-EUPOS , 2010 .

[24]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[25]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[26]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .