The mechanism of hydroperoxide-dependent reactions with participation of cytochrome P-450.

Cytochrome P-450 destruction kinetics by cumene hydroperoxide (CHP) has been studied at 25 degrees C in phosphate buffer, pH 7.25-7.50, in various systems: intact and induced rat or rabbit microsomes, highly purified LM2- and LM2- and LM4-forms of cytochrome P-450 from rabbit liver microsomes. The destruction kinetics is characterized by three phases in all systems. The CHP-influenced cytochrome P-450 destruction is a radical chain process with linear termination of the chains. The acidic phospholipids, phosphatidylserine and phosphatidylinositol and total microsomal phospholipids containing the acidic lipid components activate cytochrome P-450 in the hydroxylation of aniline and naphthalene by CHP. Phosphatidylcholine and sphingomyelin have no effect upon the cytochrome P-450 activity in the type I and II substrates oxidation by CHP. The phase transitions of the microsomal phospholipids influence the interaction of cytochrome P-450 with its reductase, altering the activation energy of type I substrates oxidation. The type II substrate oxidation is not affected by phase transitions in the full microsomal hydroxylating system.