Spectral dimension in causal set quantum gravity

We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the non-locality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation.

[1]  Reconstructing the universe , 2005, hep-th/0505154.

[2]  S. Carlip,et al.  Vacuum fluctuations and the small scale structure of spacetime. , 2011, Physical review letters.

[3]  Sumati Surya Evidence for the continuum in 2D causal set quantum gravity , 2011 .

[4]  R. Lathe Phd by thesis , 1988, Nature.

[5]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[6]  Patrick R. Zulkowski,et al.  Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.

[7]  M. Buck,et al.  A preferred ground state for the scalar field in de Sitter space , 2013, 1306.3231.

[8]  Joe Henson,et al.  QUANTUM GRAVITY PHENOMENOLOGY, LORENTZ INVARIANCE AND DISCRETENESS , 2003, gr-qc/0311055.

[9]  Seth Major,et al.  Stable homology as an indicator of manifoldlikeness in causal set theory , 2009, 0902.0434.

[10]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[11]  Piero Nicolini,et al.  Spectral dimension of a quantum universe , 2009, 0912.0220.

[12]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[13]  R. Loll,et al.  De Sitter Universe from Causal Dynamical Triangulations without Preferred Foliation , 2013, 1307.5469.

[14]  S. Zohren,et al.  Dynamical dimensional reduction in toy models of 4D causal quantum gravity , 2012, 1202.2710.

[15]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[16]  Dario Benedetti,et al.  Fractal properties of quantum spacetime. , 2008, Physical review letters.

[17]  Lee Smolin,et al.  Principle of relative locality , 2011, 1101.0931.

[18]  Rafael D. Sorkin,et al.  DISCRETENESS WITHOUT SYMMETRY BREAKING: A THEOREM , 2006, gr-qc/0605006.

[19]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[20]  David D. Reid Manifold dimension of a causal set: Tests in conformally flat spacetimes , 2003 .

[21]  G. Calcagni Diffusion in multiscale spacetimes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Elliott W. Montroll,et al.  Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .

[23]  David Rideout,et al.  Indications of de Sitter Spacetime from Classical Sequential Growth Dynamics of Causal Sets , 2009, 0909.4771.

[24]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[25]  Béla Bollobás,et al.  The Structure of Random Graph Orders , 1997, SIAM J. Discret. Math..

[26]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[27]  Fay Dowker,et al.  Introduction to causal sets and their phenomenology , 2013 .

[28]  Fay Dowker,et al.  Scalar curvature of a causal set. , 2010, Physical review letters.

[29]  B. Bollobás,et al.  Graphs whose every transitive orientation contains almost every relation , 1987 .

[30]  Margaret Nichols Trans , 2015, De-centering queer theory.

[31]  R. Sorkin,et al.  Energy-momentum diffusion from spacetime discreteness , 2008, 0810.5591.

[32]  R. Sorkin,et al.  Evidence for a continuum limit in causal set dynamics , 2000, gr-qc/0003117.

[33]  Leonardo Modesto,et al.  Super-renormalizable Quantum Gravity , 2011, 1107.2403.

[34]  Georgios Giasemidis,et al.  Multigraph models for causal quantum gravity and scale dependent spectral dimension , 2012, 1202.6322.

[35]  Moore Comment on "Space-time as a causal set" , 1988, Physical review letters.

[36]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[37]  Matt Visser,et al.  Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.

[38]  Bombelli,et al.  Bombelli et al. reply. , 1988, Physical review letters.

[39]  R. Sorkin,et al.  Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.

[40]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[41]  Rafael D. Sorkin Forks in the road, on the way to quantum gravity , 1997 .

[42]  A. Karimi,et al.  Master‟s thesis , 2011 .