Nanoparticles for biomedical imaging

Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed.

[1]  Eric T Ahrens,et al.  In vivo imaging platform for tracking immunotherapeutic cells , 2005, Nature Biotechnology.

[2]  J. Frangioni The impact of greed on academic medicine and patient care , 2008, Nature Biotechnology.

[3]  R. Weissleder,et al.  Detection of lymph node metastases by contrast‐enhanced MRI in an experimental model , 2002, Magnetic resonance in medicine.

[4]  Alexander L. Efros,et al.  Interband absorption of light in a semiconductor sphere , 2005 .

[5]  C. Chia,et al.  Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical coprecipitation method , 2008 .

[6]  Xinguo Jiang,et al.  Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. , 2008, Bioconjugate chemistry.

[7]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[8]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[9]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[10]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[11]  Sanjiv S Gambhir,et al.  Drug delivery: keeping tabs on nanocarriers. , 2007, Nature nanotechnology.

[12]  S. Nie,et al.  Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy , 2008, International journal of nanomedicine.

[13]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[14]  M. Dobrovolskaia,et al.  Immunological properties of engineered nanomaterials , 2007, Nature Nanotechnology.

[15]  R. Weissleder,et al.  Cellular Uptake and Trafficking of a Prototypical Magnetic Iron Oxide Label In Vitro , 1995, Investigative radiology.

[16]  Sean M. Hartig,et al.  Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights. , 2007, Biomacromolecules.

[17]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[18]  David J. Robertson,et al.  Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. , 2007, Small.

[19]  S. Caruthers,et al.  The FASEB JournalResearch Communication 19 F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons , 2007 .

[20]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[21]  Bansi D Malhotra,et al.  Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[23]  Walter H Backes,et al.  Evaluation of Gd(III)DTPA‐terminated poly(propylene imine) dendrimers as contrast agents for MR imaging , 2006, NMR in biomedicine.

[24]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[25]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[26]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[27]  Grace Hu,et al.  Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles , 2005, Magnetic resonance in medicine.

[28]  V. Kadam,et al.  Solid Lipid Nanoparticles as Drug Delivery System , 2010 .

[29]  Sophie Lanone,et al.  Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. , 2006, Current molecular medicine.

[30]  M. Prato,et al.  Biomedical applications of functionalised carbon nanotubes. , 2005, Chemical communications.

[31]  Alaaldin M. Alkilany,et al.  Gold nanoparticles in biology: beyond toxicity to cellular imaging. , 2008, Accounts of chemical research.

[32]  P. Choyke,et al.  Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. , 2008, Nanomedicine.

[33]  Indrajit Roy,et al.  Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. , 2003, International journal of pharmaceutics.

[34]  Benjamin R. Jarrett,et al.  Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging , 2007, Nanotechnology.

[35]  C. Mirkin Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. , 2000, Inorganic chemistry.

[36]  John V Frangioni,et al.  Translating in vivo diagnostics into clinical reality , 2006, Nature Biotechnology.

[37]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[38]  Kenneth A. Smith,et al.  Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .

[39]  D. Tomalia Starburstr̀ dendrimers — Nanoscopic supermolecules according to dendritic rules and principles , 1996 .

[40]  Shuming Nie,et al.  Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry , 2007, Nature Protocols.

[41]  Dar-Bin Shieh,et al.  Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles. , 2009, Journal of the American Chemical Society.

[42]  Sanjiv S Gambhir,et al.  PET of vascular endothelial growth factor receptor expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[43]  R. Weissleder Molecular Imaging in Cancer , 2006, Science.

[44]  R. Weissleder,et al.  Development of nanoparticle libraries for biosensing. , 2006, Bioconjugate chemistry.

[45]  Keith Guy,et al.  The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. , 2008, Toxicology and applied pharmacology.

[46]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[47]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[48]  W. Tiyaboonchai,et al.  Insulin containing polyethylenimine-dextran sulfate nanoparticles. , 2003, International journal of pharmaceutics.

[49]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[50]  Martin W. Brechbiel,et al.  Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging , 1994 .

[51]  E. W. Meijer,et al.  Dendrimers and magnetic resonance imaging , 2007 .

[52]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[53]  James H. Adair,et al.  Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. , 2008, Nano letters.

[54]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[55]  R. D. Bolskar Gadofullerene MRI contrast agents. , 2008, Nanomedicine.

[56]  Zhiqun Lin,et al.  Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. , 2007, Journal of the American Chemical Society.

[57]  C. Suri,et al.  Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. , 2008, Journal of colloid and interface science.

[58]  Sonya Cressman,et al.  Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells. , 2009, Bioconjugate chemistry.

[59]  R. Weissleder,et al.  Targeted delivery of multifunctional magnetic nanoparticles. , 2007, Nanomedicine.

[60]  Shelton D Caruthers,et al.  Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. , 2006, Nanomedicine.

[61]  Chad A. Mirkin,et al.  A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. , 2008, Nano letters.

[62]  Yongmin Chang,et al.  Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications , 2008, Nanotechnology.

[63]  Changren Zhou,et al.  Polysaccharides-based nanoparticles as drug delivery systems. , 2008, Advanced drug delivery reviews.

[64]  Lisbeth Illum,et al.  Preparation of Biodegradable, Surface Engineered PLGA Nanospheres with Enhanced Lymphatic Drainage and Lymph Node Uptake , 1997, Pharmaceutical Research.

[65]  A. Maitra Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy , 2005, Expert review of molecular diagnostics.

[66]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[67]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[68]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[69]  Jin Xie,et al.  Synthesis and stabilization of monodisperse Fe nanoparticles. , 2006, Journal of the American Chemical Society.

[70]  Noriaki Ohuchi,et al.  In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. , 2007, Cancer research.

[71]  M. Merkx,et al.  Multivalent peptide and protein dendrimers using native chemical ligation. , 2005, Angewandte Chemie.

[72]  A. Seiyama,et al.  Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. , 2008, Chemical communications.

[73]  Hak Soo Choi,et al.  Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. , 2009, Nano letters.

[74]  R. Weissleder,et al.  Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. , 2006, Bioconjugate chemistry.

[75]  John V Frangioni,et al.  New technologies for human cancer imaging. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[76]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[77]  D. Tomalia,et al.  Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. , 2007, Biochemical Society transactions.

[78]  Samuel A Wickline,et al.  Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. , 2007, Ultrasound in medicine & biology.

[79]  M. Mansuripur,et al.  Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[80]  N. Perkas,et al.  Sonochemical Synthesis of Mesoporous Iron Oxide and Accounts of Its Magnetic and Catalytic Properties , 2002 .

[81]  Jack Baniel,et al.  Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. , 2007, Biomaterials.

[82]  M. Brechbiel,et al.  Biodistribution of a 153Gd-Folate Dendrimer, Generation = 4, in Mice With Folate-Receptor Positive and Negative Ovarian Tumor Xenografts , 2002, Investigative radiology.

[83]  W. Chan,et al.  Systematic investigation of preparing biocompatible, single, and small ZnS-Capped CdSe quantum dots with amphiphilic polymers. , 2008, ACS nano.

[84]  C. Berkland,et al.  Nanoparticle formulations in pulmonary drug delivery , 2009, Medicinal research reviews.

[85]  C. R. Middaugh,et al.  Formulation and characterization of amphotericin B-polyethylenimine-dextran sulfate nanoparticles. , 2001, Journal of pharmaceutical sciences.

[86]  M. Brechbiel,et al.  Imaging folate binding protein expression with MRI. , 2002, Academic radiology.

[87]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[88]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[89]  Jerry S. H. Lee,et al.  Magnetic nanoparticles in MR imaging and drug delivery. , 2008, Advanced drug delivery reviews.

[90]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[91]  Su He Wang,et al.  Dendrimer‐Functionalized Shell‐crosslinked Iron Oxide Nanoparticles for In‐Vivo Magnetic Resonance Imaging of Tumors , 2008 .

[92]  Ralph Weissleder,et al.  Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. , 2002, Academic radiology.

[93]  W. Parak,et al.  Composite nanoparticles take aim at cancer. , 2008, ACS nano.

[94]  James H. Adair,et al.  Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. , 2008, ACS nano.

[95]  Werner Jaschke,et al.  Molecular imaging with nanoparticles: giant roles for dwarf actors , 2008, Histochemistry and Cell Biology.

[96]  R. Misra Quantum dots for tumor-targeted drug delivery and cell imaging. , 2008, Nanomedicine.

[97]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[98]  Ralph Weissleder,et al.  A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. , 2003, Cancer research.

[99]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[100]  D. Tomalia Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry , 2005 .

[101]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[102]  Robert Sinclair,et al.  Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. , 2008, Small.

[103]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[104]  A. Il’ina,et al.  Chitosan-based polyelectrolyte complexes: A review , 2005, Applied Biochemistry and Microbiology.

[105]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[106]  Ales Prokop,et al.  Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. , 2007, Biomaterials.

[107]  A. Maitra,et al.  pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. , 2005, International journal of pharmaceutics.

[108]  J. Frangioni A new approach to drug development. , 2006, New England Journal of Medicine.

[109]  M. Bawendi,et al.  Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. , 2007, Journal of the American Chemical Society.

[110]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[111]  C. Robic,et al.  Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. , 2007, International journal of pharmaceutics.

[112]  R. Weissleder,et al.  In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. , 2003, Cancer research.

[113]  Gleb B Sukhorukov,et al.  Release mechanisms for polyelectrolyte capsules. , 2007, Chemical Society reviews.

[114]  J A Frank,et al.  Synthesis and relaxometry of high‐generation (G = 5, 7, 9, and 10) PAMAM dendrimer‐DOTA‐gadolinium chelates , 1999, Journal of magnetic resonance imaging : JMRI.

[115]  Ralph Weissleder,et al.  Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI , 2002 .

[116]  Hisataka Kobayashi,et al.  Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. , 2003, Bioconjugate chemistry.

[117]  K. Yong Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging , 2009, Nanotechnology.

[118]  M. Brechbiel,et al.  Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[119]  이재현 Chemical design of nanoparticle probes for high-performance magnetic resonance imaging , 2008 .

[120]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[121]  Jinwoo Cheon,et al.  Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. , 2005, Journal of the American Chemical Society.

[122]  Targeted Magnetic Resonance Imaging Contrast Agents , 2001 .

[123]  Stephen M. Roberts,et al.  Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies , 2007 .

[124]  T J Brady,et al.  Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. , 1987, Radiology.

[125]  Elizabeth L. Bentzen,et al.  Surface modification to reduce nonspecific binding of quantum dots in live cell assays. , 2005, Bioconjugate chemistry.

[126]  Khaled Greish,et al.  Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines , 2007, Journal of drug targeting.

[127]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[128]  James H. Adair,et al.  Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. , 2008, Nano letters.

[129]  Robert Wilson The use of gold nanoparticles in diagnostics and detection. , 2008, Chemical Society reviews.

[130]  Hisataka Kobayashi,et al.  Nano-sized MRI contrast agents with dendrimer cores. , 2005, Advanced drug delivery reviews.

[131]  Seulki Lee,et al.  Dual-Modality Probes for in Vivo Molecular Imaging , 2009, Molecular imaging.

[132]  Shelton D Caruthers,et al.  Emerging nanomedicine opportunities with perfluorocarbon nanoparticles , 2007, Expert review of medical devices.

[133]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[134]  M Geso,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2007, The British journal of radiology.

[135]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[136]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[137]  R. Müller,et al.  Lipid Nanoparticles with a Solid Matrix (SLN®, NLC®, LDC®) for Oral Drug Delivery , 2008, Drug development and industrial pharmacy.

[138]  Michael Scott,et al.  Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics , 2007, International journal of nanomedicine.

[139]  E C Wiener,et al.  Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. , 2000, Investigative radiology.

[140]  Ralph Weissleder,et al.  Multifunctional magnetic nanoparticles for targeted imaging and therapy. , 2008, Advanced drug delivery reviews.

[141]  V. Tkachuk,et al.  Polyelectrolyte Nanoparticles Mediate Vascular Gene Delivery , 2004, Pharmaceutical Research.

[142]  Sailing He,et al.  Imaging pancreatic cancer using surface-functionalized quantum dots. , 2007, The journal of physical chemistry. B.

[143]  C. Serna,et al.  Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation , 2005 .

[144]  M. Pileni,et al.  New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles , 1997 .

[145]  Ande Bao,et al.  Dynamic Imaging of Functionalized Multi‐Walled Carbon Nanotube Systemic Circulation and Urinary Excretion , 2008 .

[146]  Z. Su,et al.  Colorimetric detection of immunoglobulin G by use of functionalized gold nanoparticles on polyethylenimine film , 2006, Analytical and bioanalytical chemistry.

[147]  A. Tsourkas,et al.  Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. , 2008, Biomaterials.

[148]  S. Swanson,et al.  Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement , 2008, International journal of nanomedicine.

[149]  S. Saavedra,et al.  Preparation and characterization of poly(lipid)-coated, fluorophore-doped silica nanoparticles for biolabeling and cellular imaging. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[150]  Sangjin Park,et al.  Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. , 2007 .

[151]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[152]  P. Mergo,et al.  MRI in focal liver disease: A comparison of small and ultra‐small superparamagnetic iron oxide as hepatic contrast agents , 1998, Journal of magnetic resonance imaging : JMRI.

[153]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[154]  S. Bartling,et al.  Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications. , 2007, Biomaterials.

[155]  Sabine Neuss,et al.  Size-dependent cytotoxicity of gold nanoparticles. , 2007, Small.

[156]  Raoul Kopelman,et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer. , 2008, Nano letters.

[157]  Kostas Kostarelos,et al.  Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. , 2008, Small.

[158]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[159]  L. Peek,et al.  Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. , 2007, Biomacromolecules.

[160]  W. Chan,et al.  Nanotoxicity: the growing need for in vivo study. , 2007, Current opinion in biotechnology.

[161]  Ichiro Kawahara,et al.  Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. , 2008, Neurologia medico-chirurgica.

[162]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[163]  Michael A. Schreuder,et al.  Controlling the reactivity of ampiphilic quantum dots in biological assays through hydrophobic assembly of custom PEG derivatives. , 2008, Bioconjugate chemistry.

[164]  Sean M. Hartig,et al.  Multifunctional Nanoparticulate Polyelectrolyte Complexes , 2007, Pharmaceutical Research.

[165]  E. A. Waters,et al.  Contrast agents for MRI , 2008, Basic Research in Cardiology.

[166]  M. Becker,et al.  Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. , 2008, Chemical communications.

[167]  A. Bée,et al.  Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid , 1997, Journal of colloid and interface science.

[168]  Michael A. Brook,et al.  Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays , 2008 .

[169]  C. Berkland,et al.  In Situ Synthesis of Iron Oxide within Polyvinylamine Nanoparticle Reactors , 2009 .

[170]  H. Dai,et al.  PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. , 2009, Journal of the American Chemical Society.

[171]  Nathan Kohler,et al.  A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. , 2004, Journal of the American Chemical Society.

[172]  Mehmet Bilgen,et al.  Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[173]  M. Zachariah,et al.  Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials , 2004 .

[174]  R. Heumann,et al.  Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate–bovine serum albumin into these nanoparticles , 2007, JBIC Journal of Biological Inorganic Chemistry.

[175]  M Laird Forrest,et al.  Effects of nanomaterial physicochemical properties on in vivo toxicity. , 2009, Advanced drug delivery reviews.

[176]  Mingyuan Gao,et al.  Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer , 2006 .

[177]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[178]  A. D. Watson,et al.  Metal-Based X-ray Contrast Media. , 1999, Chemical reviews.

[179]  S. Caruthers,et al.  Molecular imaging and therapy of atherosclerosis with targeted nanoparticles , 2007, Journal of magnetic resonance imaging : JMRI.

[180]  Pratim Biswas,et al.  Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies , 2009 .

[181]  Chenjie Xu,et al.  Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. , 2008, Journal of the American Chemical Society.

[182]  Gabriel A Silva,et al.  Characterization of the functional binding properties of antibody conjugated quantum dots. , 2007, Nano letters.

[183]  Functionalization of Carbon Nanotubes with Antibodies for Breast Cancer Detection Applications , 2004 .

[184]  Weibo Cai,et al.  Nanoplatforms for targeted molecular imaging in living subjects. , 2007, Small.

[185]  Donald A Tomalia,et al.  Dendrimers in biomedical applications--reflections on the field. , 2005, Advanced drug delivery reviews.

[186]  S. Ferrini,et al.  MR and Iron Magnetic Nanoparticles. Imaging Opportunities in Preclinical and Translational Research , 2008, Tumori.

[187]  Juewen Liu,et al.  Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. , 2004, Journal of the American Chemical Society.

[188]  G. Kwon,et al.  Clinical developments in drug delivery nanotechnology. , 2008, Advanced drug delivery reviews.

[189]  M. O. Manasreh,et al.  Temperature dependence of the band gap of colloidal CdSe∕ZnS core/shell nanocrystals embedded into an ultraviolet curable resin , 2006 .

[190]  Yongmin Kim,et al.  Transfection of Neuroprogenitor Cells with Iron Nanoparticles for Magnetic Resonance Imaging Tracking: Cell Viability, Differentiation, and Intracellular Localization , 2005, Molecular Imaging and Biology.

[191]  Shuming Nie,et al.  Bioconjugated quantum dots for in vivo molecular and cellular imaging. , 2008, Advanced drug delivery reviews.

[192]  T. Dantas,et al.  Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. , 2006, Biomacromolecules.

[193]  D. Yee,et al.  Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. , 2008, Nanomedicine.

[194]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[195]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[196]  Lisa Brannon-Peppas,et al.  Active targeting schemes for nanoparticle systems in cancer therapeutics. , 2008, Advanced drug delivery reviews.

[197]  Klaas Nicolay,et al.  Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. , 2008, Bioconjugate chemistry.

[198]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[199]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[200]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.