On the Nodal Structure of Nonlinear Stationary Waves on Star Graphs

We consider stationary waves on nonlinear quantum star graphs, i.e., solutions to the stationary (cubic) nonlinear Schrodinger equation on a metric star graph with Kirchhoff matching conditions at the centre. We prove the existence of solutions that vanish at the centre of the star and classify them according to the nodal structure on each edge (i.e., the number of nodal domains or nodal points that the solution has on each edge). We discuss the relevance of these solutions in more applied settings as starting points for numerical calculations of spectral curves and put our results into the wider context of nodal counting, such as the classic Sturm oscillation theorem.

[1]  Sven Gnutzmann,et al.  Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory. , 2015, Physical review. E.

[2]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[3]  C. Sturm,et al.  Mémoire sur une classe d'équations à différences partielles. , 2009 .

[4]  Nodal counting on quantum graphs , 2003, nlin/0305020.

[5]  Gregory Berkolaiko,et al.  A Lower Bound for Nodal Count on Discrete and Metric Graphs , 2006, math-ph/0611026.

[6]  G. Berkolaiko,et al.  Nodal Statistics on Quantum Graphs , 2017, Communications in Mathematical Physics.

[7]  The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions , 2012 .

[8]  Arke Pleijel,et al.  Remarks on courant's nodal line theorem , 1956 .

[9]  August J. Krueger,et al.  Nonlinear Sturm Oscillation: from the interval to a star , 2016, 1610.07068.

[10]  Philipp Schapotschnikow Eigenvalue and nodal properties on quantum graph trees , 2006 .

[11]  R. Band The nodal count {0,1,2,3,…} implies the graph is a tree , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  G. Berkolaiko,et al.  Stability of eigenvalues of quantum graphs with respect to magnetic perturbation and the nodal count of the eigenfunctions , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures. , 2016, Physical review. E.

[14]  G. Berkolaiko,et al.  Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs , 2015, 1503.07245.

[15]  R. Courant,et al.  Ein allgemeiner Satzt zur Theorie der Eigenfunktionen selbsadjungierter Differentialausdrücke , 1923 .