Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes

After a long history and conflicting views, solid-contact (SC) solvent polymeric membrane ion-selective electrodes (ISEs) emerged as reliable potentometric-sensing devices with unique advantages. From the large variety of proposed SCs inherently conductive polymers emerged as the materials of choice. In our view, the most attractive feature of SC ISEs is their compatibility with thin- and thick-film microfabrication technologies that can provide cheap, mass-produced sensors and sensor arrays that can be integrated with the measuring, data acquisition, and control electronics in a straightforward way. However, despite the impressive properties of certain SC electrodes and their potential advantages, they remained primarily in the research laboratories. To make the jump from the research laboratories into commercial devices, it would be essential to prove that miniaturized SC ISEs can indeed match or surpass the performance characteristics of the conventional, liquid-contact macroelectrodes. In addition, it would be important to settle on the quality control criteria and testing protocols for assessing the performance characteristics of SC electrodes. It could help in interpreting the sometimes-inconsistent experimental data. Once cheap, miniaturized, SC ISEs will mach the performance characteristics of macroscopic-size electrodes, it is expected to have an important impact in a variety of applications requiring robust, maintenance-free, or single-use ISEs, e.g., in homecare or bedside diagnostics, environmental analysis, and quality control assessment. In addition, reliable SC ISEs are expected to revitalize the field of ion-selective field effect transistors and open new possibilities in combination with nanowire-based devices.

[1]  Philip Smith,et al.  Electrochemical sensor applications to the study of molecular physiology and analyte flux in plants , 2006 .

[2]  J. Bobacka,et al.  Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. , 1999, Analytical chemistry.

[3]  E. Lindner,et al.  Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes , 2005 .

[4]  N. D. de Rooij,et al.  Potential Drifts of Solid‐Contacted Ion‐Selective Electrodes Due to Zero‐Current Ion Fluxes Through the Sensor Membrane , 2000 .

[5]  D. J. Harrison,et al.  Dual-Sorption Model of Water Uptake in Poly(vinyl chloride)-Based Ion-Selective Membranes: Experimental Water Concentration and Transport Parameters , 1996 .

[6]  A. Ivaska,et al.  Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes , 2002 .

[7]  N. F. Rooij,et al.  Optimization of the Composition of Interfaces in Miniature Planar Chloride Electrodes , 2003 .

[8]  J. Schindler,et al.  Eine neue Konstruktion von Durchflußsensoren mit tubulären ionenselektiven Carrier-PVC-Membranen und Zement-Festableitung , 1989 .

[9]  R. Buck,et al.  Calibration of a planar differential CO2 probe , 1999 .

[10]  J. Bobacka Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes , 2006 .

[11]  L. Jaffe,et al.  Detection of extracellular calcium gradients with a calcium-specific vibrating electrode , 1990, The Journal of cell biology.

[12]  H. Troy Nagle,et al.  Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications , 1993 .

[13]  A. Michalska,et al.  Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers , 2005, Analytical and bioanalytical chemistry.

[14]  R. Buck Ion selective electrodes , 1976 .

[15]  A. Michalska,et al.  All-Solid-State Potentiometric Sensors for Potassium and Sodium Based on Poly(pyrrole) Solid Contact , 1997 .

[16]  A. Ivaska,et al.  Potentiometric ion sensors. , 2008, Chemical reviews.

[17]  H. J. James,et al.  Coated wire ion-selective electrodes. , 1971, Analytical chemistry.

[18]  J. Zook,et al.  Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes. , 2008, The Analyst.

[19]  E. Bakker,et al.  Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. , 2001, Analytical chemistry.

[20]  Richard P. Buck,et al.  Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994) , 1994 .

[21]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[22]  P. C. Meier,et al.  Evaluation of the optimum composition of neutral-carrier membrane electrodes with incorporated cation-exchanger sites , 1984 .

[23]  B. P. Nikolskii,et al.  Solid Contact in Membrane Ion-Selective Electrodes , 1985 .

[24]  Karin Potje-Kamloth,et al.  Semiconductor junction gas sensors. , 2008, Chemical reviews.

[25]  P. Bühlmann,et al.  Studies on the phase boundaries and the significance of ionic sites of liquid membrane ion‐selective electrodes , 1995 .

[26]  M. Meyerhoff,et al.  Response of ion-selective field effect transistors to carbon dioxide and organic acids. , 1985, Analytical chemistry.

[27]  Michael R. Neuman,et al.  Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart , 1995 .

[28]  P. Bühlmann,et al.  The phase-boundary potential model. , 2004, Talanta.

[29]  E. Pretsch,et al.  Optimum composition of neutral carrier based pH electrodes , 1994 .

[30]  T. Fjeldly,et al.  Fluoride Electrodes with Reversible Solid‐State Contacts , 1980 .

[31]  M. Messerli,et al.  Principles, Development and Applications of Self-Referencing Electrochemical Microelectrodes to the Determination of Fluxes at Cell Membranes , 2007 .

[32]  Ernö Pretsch,et al.  Redox-Active Self-Assembled Monolayers for Solid-Contact Polymeric Membrane Ion-Selective Electrodes , 2002 .

[33]  E. Pretsch,et al.  Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes , 1997 .

[34]  Eric Bakker,et al.  Pulstrodes: triple pulse control of potentiometric sensors. , 2004, Journal of the American Chemical Society.

[35]  Yoshio Umezawa,et al.  Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report) , 2000 .

[36]  Z. Brzózka,et al.  Further studies on the role of redox-active monolayer as intermediate phase of solid-state sensors , 2007 .

[37]  A. Michalska,et al.  Conducting polymer membranes for low activity potentiometric ion sensing. , 2004, Talanta.

[38]  Justin M Zook,et al.  Mathematical model of current-polarized ionophore-based ion-selective membranes. , 2008, The journal of physical chemistry. B.

[39]  W. E. Morf,et al.  Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes , 1991 .

[40]  F. Diederich,et al.  Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes , 2000 .

[41]  E. Bakker,et al.  Synthesis and characterization of neutral hydrogen ion-selective chromoionophores for use in bulk optodes , 1993 .

[42]  J. Redepenning,et al.  Influence of supporting electrolyte concentration and composition on formal potentials and entropies of redox couples incorporated in Nafion coatings on electrodes , 1986 .

[43]  E. Bakker,et al.  Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors , 1993 .

[44]  E. Hall,et al.  Ion-transport and diffusion coefficients of non-plasticised methacrylic-acrylic ion-selective membranes. , 2004, Talanta.

[45]  Michael R. Neuman,et al.  Ion-Selective Microchemical Sensors with Reduced Preconditioning Time. Membrane Biostability Studies and Applications in Blood Analysis , 1994 .

[46]  E. Lindner,et al.  A chronoamperometric method to estimate ionophore loss from ion-selective electrode membranes. , 1999, Analytical chemistry.

[47]  Eric Bakker,et al.  Solid contact potentiometric sensors for trace level measurements. , 2006, Analytical chemistry.

[48]  Ernö Pretsch,et al.  Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. , 2006, Journal of the American Chemical Society.

[49]  R. E. Gyurcsányi,et al.  Picomolar detection limits with current-polarized Pb2+ ion-selective membranes. , 2001, Analytical chemistry.

[50]  R. B. Ash,et al.  In vivo and in vitro testing of microelectronically fabricated planar sensors designed for applications in cardiology , 1993 .

[51]  R. E. Gyurcsányi,et al.  Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. , 2004, Talanta.

[52]  Bruce A McKinley ISFET and fiber optic sensor technologies: in vivo experience for critical care monitoring. , 2008, Chemical reviews.

[53]  J M Anderson,et al.  Ion-selective membranes with low plasticizer content: electroanalytical characterization and biocompatibility studies. , 1994, Journal of biomedical materials research.

[54]  Ziqiang Zhu,et al.  Fabrication and Characterization of Potassium Ion-Selective Electrode Based on Porous Silicon , 2007, IEEE Sensors Journal.

[55]  Beat Müller,et al.  Microscale mineralization pathways in surface sediments: A chemical sensor study in Lake Baikal , 2006 .

[56]  P. Hernández,et al.  An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water , 2003, Analytical and bioanalytical chemistry.

[57]  A. Lewenstam,et al.  Calcium ion-selective electrodes under galvanostatic current control , 2005 .

[58]  C. E. Efstathiou,et al.  All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact , 2004 .

[59]  A. Bard,et al.  Scanning electrochemical microscopy. 19. Ion-selective potentiometric microscopy , 1993 .

[60]  Yoshio Umezawa,et al.  Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report) , 2008 .

[61]  R. E. Gyurcsányi,et al.  Tailored transport through ion-selective membranes for improved detection limits and selectivity coefficients , 1999 .

[62]  Zbigniew Brzozka,et al.  Studies on ferrocene organothiol monolayer as an intermediate phase of potentiometric sensors with gold inner contact , 2005 .

[63]  Gordon G. Wallace,et al.  Conjugated polymers : New materials for photovoltaics , 2000 .

[64]  D. J. Harrison,et al.  Comparison of Numerical Modeling of Water Uptake in Poly(vinyl chloride)-Based Ion-Selective Membranes with Experiment , 1996 .

[65]  M R Neuman,et al.  Analytical performance characteristics of thin and thick film amperometric microcells , 2001, Fresenius' journal of analytical chemistry.

[66]  R. Buck,et al.  Microfabricated potentiometric electrodes and their in vivo applications. , 2000, Analytical chemistry.

[67]  Ernö Pretsch,et al.  Response Behavior of Poly(vinyl chloride)‐ and Polyurethane‐Based Ca2+‐Selective Membrane Electrodes with Polypyrrole‐ and Poly(3‐octylthiophene)‐Mediated Internal Solid Contact , 2006 .

[68]  Ernö Pretsch,et al.  A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit , 2004, Analytical and bioanalytical chemistry.

[69]  P. C. Caldwell Glass Electrodes for Hydrogen and other Cations, George Eisenman (Ed.). Marcel Dekker, Inc., New York (1967) , 1969 .

[70]  Róbert E. Gyurcsányi,et al.  Novel polypyrrole based all-solid-state potassium-selective microelectrodes , 1998 .

[71]  A. Ivaska,et al.  All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact , 1994 .

[72]  E. Pretsch,et al.  Rotating Ion‐Selective Membrane Electrodes for Trace‐Level Measurements , 2003 .

[73]  T. Osaka,et al.  Analysis of the long-term potential stability of an all-solid-state potassium-selective electrode with electroactive polypyrrole film , 1996 .

[74]  Ernö Pretsch,et al.  Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range , 2004 .

[75]  M. Meyerhoff New in vitro analytical approaches for clinical chemistry measurements in critical care. , 1990, Clinical chemistry.

[76]  Claude Gabrielli,et al.  An Electrogravimetric Study of an All-Solid-State Potassium Selective Electrode with Prussian Blue as the Electroactive Solid Internal Contact , 2005 .

[77]  P. Hauser,et al.  A potassium-ion selective electrode with valinomycin based poly(vinyl chloride) membrane and a poly(vinyl ferrocene) solid contact , 1995 .

[78]  Albert van den Berg,et al.  Modification of ISFESTs by covalent anchoring of poly(hydroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface , 1990 .

[79]  A. Lewenstam,et al.  The Influence of the Conditioning Procedure on Potentiometric Characteristics of Solid Contact Calcium-Selective Electrodes in Nanomolar Concentration Solutions , 2006 .

[80]  A. Michalska,et al.  Effect of interferents present in the internal solution or in the conducting polymer transducer on the responses of ion-selective electrodes , 2006, Analytical and bioanalytical chemistry.

[81]  D. Reinhoudt,et al.  Reference field effect transistors based on chemically modified ISFETs , 1990 .

[82]  Johan Bobacka,et al.  All-solid-state ion sensors using conducting polymers as ion-to-electron transducers , 2004 .

[83]  A. Michalska,et al.  All-solid-state calcium solvent polymeric membrane electrode for low-level concentration measurements. , 2003, Analytical chemistry.

[84]  Andrzej Lewenstam,et al.  Factors affecting the potentiometric response of all-solid-state solvent polymeric membrane calcium-selective electrode for low-level measurements. , 2004, Analytical chemistry.

[85]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[86]  Ernö Pretsch,et al.  Evidence of a water layer in solid-contact polymeric ion sensors. , 2008, Physical chemistry chemical physics : PCCP.

[87]  E. Bakker,et al.  Calcium pulstrodes with 10-fold enhanced sensitivity for measurements in the physiological concentration range. , 2006, Analytical chemistry.

[88]  A. Michalska,et al.  Lowering the Detection Limit of Ion-Selective Plastic Membrane Electrodes with Conducting Polymer Solid Contact and Conducting Polymer Potentiometric Sensors , 2003 .

[89]  Dermot Diamond,et al.  All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact , 1992 .

[90]  A. Ivaska,et al.  Microcavity Based Solid‐Contact Ion‐Selective Microelectrodes , 2006 .

[91]  Gerald Urban,et al.  Thin-film ion-selective sensors based on neutral carrier membranes , 1990 .

[92]  Segyeong Joo,et al.  Chemical sensors with integrated electronics. , 2008, Chemical reviews.

[93]  E. Bakker,et al.  Pulsed galvanostatic control of ionophore-based polymeric ion sensors. , 2003, Analytical chemistry.

[94]  E. Pretsch,et al.  Influence of Incorporated Lipophilic Particles on Ion Fluxes Through Polymeric Ion-Selective Membranes , 2003 .

[95]  M. Meyerhoff,et al.  Differential ion-selective membrane electrode-based potentiometric gas-sensing cells with enhanced gas sensitivity , 1990 .

[96]  Eric Bakker,et al.  Reversible electrochemical detection of nonelectroactive polyions. , 2003, Journal of the American Chemical Society.

[97]  Michael R. Neuman,et al.  Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds. , 2007, Talanta.

[98]  J. Zook,et al.  Mathematical model of current-polarized ionophore-based ion-selective membranes: Large current chronopotentiometry , 2008 .

[99]  W. E. Morf,et al.  Recent developments in the field of ion selective electrodes , 1975 .

[100]  R. E. Gyurcsányi,et al.  A chronoamperometric method to estimate changes in the membrane composition of ion-selective membranes. , 2001, Analytical chemistry.

[101]  E. Pretsch,et al.  Chromoionophore-Mediated Imaging of Water Transport in Ion-Selective Membranes , 1998 .

[102]  Yoshio Umezawa,et al.  Potentiometric selectivity coefficients of ion-selective electrodes. Part II. Inorganic anions (IUPAC Technical Report) , 2002 .

[103]  Richard B. Brown,et al.  Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films , 1996 .

[104]  Eric Bakker,et al.  Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level. , 2007, Sensors and actuators. B, Chemical.

[105]  A. Machado Conductive epoxy-based ion-selective electrodes. A review , 1994 .

[106]  A. Stein,et al.  Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. , 2007, Analytical chemistry.

[107]  Pd Dr. Daniel Ammann Ion-Selective Microelectrodes , 1986, Advances in Exprerimental Medicine and Biology.

[108]  A. Öpik,et al.  Synthesis and characterization of inherently conducting polymers by using Scanning Electrochemical Microscopy and Electrochemical Quartz Crystal Microbalance , 2005 .

[109]  C. V. King,et al.  Reference Electrodes: Theory and Practice , 1961 .

[110]  D. J. Harrison,et al.  A novel spectroscopic method to image H2O distribution in ion-selective membranes , 1990 .

[111]  F. Rius,et al.  Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. , 2008, Analytical chemistry.

[112]  Robert J. Huber,et al.  Ion-Sensitive Field Effect Transistors , 1980 .

[113]  W. Simon,et al.  Lifetime of neutral carrier based ion-selective liquid-membrane electrodes , 1980 .

[114]  R. E. Gyurcsányi,et al.  Spectroelectrochemical microscopy: spatially resolved spectroelectrochemistry of carrier-based ion-selective membranes. , 2005, Analytical chemistry.

[115]  R. E. Gyurcsányi,et al.  Synthesis and Characterization of a Novel, Colored Lipophilic Additive for Spectral Imaging the Transport in Ionophore Based Ion-Selective Membranes , 2006 .

[116]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[117]  R. Buck,et al.  Studies of Potential Generation Across Membrane Sensors at Interfaces and Through Bulk , 1998 .