Structural Properties of the Caenorhabditis elegans Neuronal Network

Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.

[1]  Max F. Meyer,et al.  The Proof and Measurement of Association between Two Things. , 1904 .

[2]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[3]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[4]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[5]  Sundaram Seshu,et al.  Linear Graphs and Electrical Networks , 1961 .

[6]  Wan H. Kim,et al.  Topological analysis and synthesis of communication networks , 1962 .

[7]  Thomas Edwin Stern,et al.  Theory of nonlinear networks and systems : an introduction , 1965 .

[8]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[9]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[10]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[12]  C. H. Edwards,et al.  Differential Equations and Boundary Value Problems: Computing and Modeling , 1985 .

[13]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  F. Bien Constructions of telephone networks by group representations , 1989 .

[16]  R. Hosono [The nervous system of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[17]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[18]  Ferenc Juhász,et al.  The asymptotic behaviour of Fiedler's algebraic connectivity for random graphs , 1991, Discret. Math..

[19]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[20]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  John Scott Social Network Analysis , 1988 .

[22]  W. Yamamoto,et al.  AY's Neuroanatomy of C. elegans for Computation , 1992 .

[23]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[24]  Cori Bargmann Genetic and cellular analysis of behavior in C. elegans. , 1993, Annual review of neuroscience.

[25]  D. Riddle C. Elegans II , 1998 .

[26]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[27]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[28]  V. F. Kolchin,et al.  Random Graphs: Contents , 1998 .

[29]  D. Brownlee,et al.  Exploring the neurotransmitter labyrinth in nematodes , 1999, Trends in Neurosciences.

[30]  Xerox,et al.  The Small World , 1999 .

[31]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[32]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[33]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[35]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[36]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Yasuhiro Funabashi,et al.  Geometrical structure of the neuronal network of Caenorhabditis elegans , 2001 .

[38]  R. Yuste,et al.  Topology of gap junction networks in C. elegans. , 2001, Journal of theoretical biology.

[39]  S. Strogatz Exploring complex networks , 2001, Nature.

[40]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[41]  R. F. Cancho,et al.  Topology of technology graphs: small world patterns in electronic circuits. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[43]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[44]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[46]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[47]  R. Ferrer i Cancho,et al.  Scale-free networks from optimal design , 2002, cond-mat/0204344.

[48]  R. Monasson,et al.  On Large Deviation Properties of Erdös–Rényi Random Graphs , 2003, cond-mat/0311535.

[49]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[50]  R. Milo,et al.  Subgraphs in random networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Sanjeev R. Kulkarni,et al.  A "Small World" Approach to Heterogeneous Networks , 2003, Commun. Inf. Syst..

[52]  U. Alon,et al.  Search for computational modules in the C. elegans brain , 2004, BMC Biology.

[53]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[54]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Shawn R. Lockery,et al.  Computational Rules for Chemotaxis in the Nematode C. elegans , 1999, Journal of Computational Neuroscience.

[56]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[57]  David Harel,et al.  Combining Hierarchy and Energy for Drawing Directed Graphs , 2003 .

[58]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[59]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[60]  U. Alon,et al.  Subgraphs and network motifs in geometric networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[62]  Y. Koren,et al.  Drawing graphs by eigenvectors: theory and practice , 2005 .

[63]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[64]  Kai Li,et al.  Bridging the digital divide: storage media + postal network = generic high-bandwidth communication , 2005, TOS.

[65]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[66]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[67]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[68]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[69]  Lav R. Varshney,et al.  Optimal Information Storage in Noisy Synapses under Resource Constraints , 2006, Neuron.

[70]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[71]  Zeynep F. Altun,et al.  Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. , 2006, International review of neurobiology.

[72]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[73]  F. Goldberg,et al.  Bounding the gap between extremal Laplacian eigenvalues of graphs , 2006 .

[74]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[75]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[76]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Ernesto Estrada,et al.  Network robustness to targeted attacks. The interplay of expansibility and degree distribution , 2006 .

[78]  Kurt Bryan,et al.  The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..

[79]  A. Motter,et al.  Synchronization is optimal in nondiagonalizable networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[81]  Jacob G. Foster,et al.  Link and subgraph likelihoods in random undirected networks with fixed and partially fixed degree sequences. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Beth L. Chen Neuronal Network of C. elegans: from Anatomy to Behavior , 2007 .

[83]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[84]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[85]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[86]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[87]  G. Fagiolo Clustering in complex directed networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[89]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[90]  Stephen J Smith,et al.  Circuit reconstruction tools today , 2007, Current Opinion in Neurobiology.

[91]  R.R. Mazumdar,et al.  A Case for Hybrid Sensor Networks , 2008, IEEE/ACM Transactions on Networking.

[92]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[93]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[94]  Ravi Mazumdar,et al.  A case for hybrid sensor networks , 2008, IEEE/ACM Trans. Netw..

[95]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[96]  N. Chatterjee,et al.  Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. , 2008, Progress in brain research.

[97]  Soummya Kar,et al.  Topology for Distributed Inference on Graphs , 2006, IEEE Transactions on Signal Processing.

[98]  Evan Z. Macosko,et al.  A huband-spoke circuit drives pheromone attraction and social behaviour in C . elegans , 2009 .

[99]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[100]  H. Sebastian Seung,et al.  Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes , 2009, Neuron.

[101]  H. Kori,et al.  Impact of hierarchical modular structure on ranking of individual nodes in directed networks , 2009, 0907.0900.

[102]  R. Pan,et al.  Mesoscopic Organization Reveals the Constraints Governing Caenorhabditis elegans Nervous System , 2009, PloS one.

[103]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[104]  Chris Arney Network Analysis: Methodological Foundations , 2012 .