Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system

A stochastic model of oil-palm (Elaeis guineensis Jacq.) root system architecture and development has been developed. This model enabled us to create 3-D numerical models of complete root systems by simulation. The application of a postprocessor software, called “RACINES”, to these 3-D numerical models, provided an estimation of some parameters of plant root systems. The objective of this paper is to present oil-palm root characteristics as possible outputs of the application of this RACINES software. The outputs described in this article cover (i) spatial distribution of roots under plantation conditions, (ii) the estimation and distribution of total root biomass, per root type or per soil horizon and (iii) the location and quantification of absorbent surfaces. The computing techniques used were based on voxellization of space and creation of 3-D virtual sceneries exactly reproducing observed planting designs. By comparing the results of observations and simulations for spatial distribution (by trench wall density maps) and root biomasses (by real and virtual sampling) we were able to carry out additional numerical validations of the model.

[1]  Jean Dauzat Radiative transfer simulation on computer models of Elaeis guineensis , 1993 .

[2]  K. Kubitzki,et al.  Architecture of Tropical Trees@@@Essai sur l'architecture et la dynamique de croissance des arbres tropicaux , 1972 .

[3]  N. Claassen,et al.  Verification of a mathematical model by simulating potassium uptake from soil , 1986, Plant and Soil.

[4]  Hervé Rey,et al.  Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system , 1997, Plant and Soil.

[5]  L. Pagès,et al.  A simulation model of the three-dimensional architecture of the maize root system , 1989, Plant and Soil.

[6]  Christophe Jourdan Modélisation de l'architecture du système racinaire du palmier à huile. Une application pratique : estimation du volume de sol utile pour le potassium et le phosphore , 1995 .

[7]  P. de Reffye,et al.  A model simulating above- and below-ground tree architecture with agroforestry applications , 1995, Agroforestry Systems.

[8]  P. Tinker,et al.  Uptake of solutes by multiple root systems from soil , 1973, Plant and Soil.

[9]  송형근,et al.  연속제강공정의 Simulation Model , 1986 .

[10]  S. A. Barber,et al.  Modeling magnesium, phosphorus and potassium uptake by loblolly pine seedlings using a Barber-Cushman approach , 2004, Plant and Soil.

[11]  R. Bras,et al.  A MODEL FOR WATER UPTAKE AND DEVELOPMENT OF ROOT SYSTEMS , 1987 .

[12]  R. Grant Simulation model of soil compaction and root growth , 2004, Plant and Soil.

[13]  P. J. Smethurst,et al.  SIMULATING NUTRIENT UPTAKE BY SINGLE OR COMPETING AND CONTRASTING ROOT SYSTEMS , 1993 .

[14]  Frederic Blaise Simulation du parallelisme dans la croissance des plantes et applications , 1991 .

[15]  C. Jones,et al.  Improved root growth and water uptake in the epic model , 1992 .

[16]  Gail W. T. Wilson,et al.  Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency , 1991 .

[17]  P. Tomlinson,et al.  Tropical Trees and Forests: An Architectural Analysis , 1978 .

[18]  Winfried Kurth,et al.  MORPHOLOGICAL MODELS OF PLANT GROWTH : POSSIBILITIES AND ECOLOGICAL RELEVANCE , 1994 .

[19]  A. Lindenmayer,et al.  Developmental models of herbaceous plants , 1990 .

[20]  J. Hopmans,et al.  Simultaneous modeling of transient three-dimensional root growth and soil water flow , 1994, Plant and Soil.

[21]  R. Grant Simulation model of soil compaction and root growth , 1993, Plant and Soil.

[22]  Loïc Pagès,et al.  Modélisation de l'architecture racinaire , 1995 .

[23]  B. Jaillard,et al.  pH mapping in transparent gel using color indicator videodensitometry , 1996, Plant and Soil.

[24]  G. Berntson Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? , 1994 .

[25]  É. Dufrêne Photosynthèse, consommation en eau et modélisation de la production chez le palmier à huile (Elaeis guineensis Jacq) , 1989 .

[26]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[27]  S. A. Barber,et al.  Plant root morphology and nutrient uptake , 1984 .

[28]  Christophe Jourdan,et al.  Modélisation de l'architecture et du développement du système racinaire du palmier à huile (Elaeis guineensis Jacq.) , 1995 .

[29]  Hervé Rey,et al.  Modelling and simulation of the architecture and development of the oil-palm (t Elaeis guineensis Jacq.) root system , 1997, Plant and Soil.

[30]  Loïc Pagès,et al.  Modélisation stochastique de la croissance et du développement du système racinaire de jeunes pêchers. I : Estimation et validation du modèle , 1992 .

[31]  Yann Guédon,et al.  Modélisation et simulation de l'architecture et de la croissance des plantes , 1993 .

[32]  Sakae Shibusawa,et al.  Modelling the branching growth fractal pattern of the maize root system , 1994, Plant and Soil.

[33]  Ned Greene,et al.  Voxel space automata: modeling with stochastic growth processes in voxel space , 1989, SIGGRAPH.