Efficient Search for Transformation-based Inference

This paper addresses the search problem in textual inference, where systems need to infer one piece of text from another. A prominent approach to this task is attempts to transform one text into the other through a sequence of inference-preserving transformations, a.k.a. a proof, while estimating the proof's validity. This raises a search challenge of finding the best possible proof. We explore this challenge through a comprehensive investigation of prominent search algorithms and propose two novel algorithmic components specifically designed for textual inference: a gradient-style evaluation function, and a local-lookahead node expansion method. Evaluations, using the open-source system, BiuTee, show the contribution of these ideas to search efficiency and proof quality.

[1]  B. Magnini,et al.  Recognizing Textual Entailment with Tree Edit Distance Algorithms , 2005 .

[2]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[3]  Ido Dagan,et al.  A Confidence Model for Syntactically-Motivated Entailment Proofs , 2011, RANLP.

[4]  S. T E F A N H A R M E L I N G Inferring textual entailment with a probabilistically sound calculus ∗ , 2009 .

[5]  Sarit Kraus,et al.  KBFS: K-Best-First Search , 2003, Annals of Mathematics and Artificial Intelligence.

[6]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[7]  Dekang Lin,et al.  DIRT – Discovery of Inference Rules from Text , 2001 .

[8]  Ido Dagan,et al.  Directional distributional similarity for lexical inference , 2010, Natural Language Engineering.

[9]  Philip Bille,et al.  A survey on tree edit distance and related problems , 2005, Theor. Comput. Sci..

[10]  Eric A. Hansen,et al.  Beam-Stack Search: Integrating Backtracking with Beam Search , 2005, ICAPS.

[11]  Roni Stern,et al.  Using Lookaheads with Optimal Best-First Search , 2010, AAAI.

[12]  Yashar Mehdad,et al.  Automatic Cost Estimation for Tree Edit Distance Using Particle Swarm Optimization , 2009, ACL.

[13]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[14]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[15]  Noah A. Smith,et al.  Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Questions , 2010, NAACL.

[16]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[17]  Dan Klein,et al.  Simple Coreference Resolution with Rich Syntactic and Semantic Features , 2009, EMNLP.

[18]  Ido Dagan,et al.  Semantic Inference at the Lexical-Syntactic Level , 2007, AAAI.

[19]  Dan Roth,et al.  An Inference Model for Semantic Entailment in Natural Language , 2005, IJCAI.

[20]  Christopher D. Manning,et al.  Probabilistic Tree-Edit Models with Structured Latent Variables for Textual Entailment and Question Answering , 2010, COLING.

[21]  Ido Dagan,et al.  Addressing Discourse and Document Structure in the RTE Search Task , 2009, TAC.

[22]  Patrick Pantel,et al.  DIRT @SBT@discovery of inference rules from text , 2001, KDD '01.

[23]  David Furcy,et al.  Limited Discrepancy Beam Search , 2005, IJCAI.

[24]  Richard E. Korf,et al.  Macro-Operators: A Weak Method for Learning , 1985, Artif. Intell..

[25]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[26]  Ido Dagan,et al.  Scaling Web-based Acquisition of Entailment Relations , 2004, EMNLP.

[27]  Nathan R. Sturtevant,et al.  Simultaneously Searching with Multiple Settings: An Alternative to Parameter Tuning for Suboptimal Single-Agent Search Algorithms , 2010, SOCS.

[28]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[29]  Bernardo Magnini,et al.  Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment , 2005, MLCW.

[30]  Jonathan Schaeffer,et al.  Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators , 2005, J. Artif. Intell. Res..

[31]  Vadim Bulitko,et al.  Lookahead Pathology in Real-Time Path-Finding , 2006, AAAI.