Absolute IGS antenna phase center model igs08.atx: status and potential improvements

On 17 April 2011, all analysis centers (ACs) of the International GNSS Service (IGS) adopted the reference frame realization IGS08 and the corresponding absolute antenna phase center model igs08.atx for their routine analyses. The latter consists of an updated set of receiver and satellite antenna phase center offsets and variations (PCOs and PCVs). An update of the model was necessary due to the difference of about 1 ppb in the terrestrial scale between two consecutive realizations of the International Terrestrial Reference Frame (ITRF2008 vs. ITRF2005), as that parameter is highly correlated with the GNSS satellite antenna PCO components in the radial direction.For the receiver antennas, more individual calibrations could be considered and GLONASS-specific correction values were added. For the satellite antennas, all correction values except for the GPS PCVs were newly estimated considering more data than for the former model. Satellite-specific PCOs for all GPS satellites active since 1994 could be derived from reprocessed solutions of five ACs generated within the scope of the first IGS reprocessing campaign. Two ACs separately derived a full set of corrections for all GLONASS satellites active since 2003.Ignoring scale-related biases, the accuracy of the satellite antenna PCOs is on the level of a few cm. With the new phase center model, orbit discontinuities at day boundaries can be reduced, and the consistency between GPS and GLONASS results is improved. To support the analysis of low Earth orbiter (LEO) data, igs08.atx was extended with LEO-derived PCV estimates for big nadir angles in June 2013.

[1]  Philipp Zeimetz Zur Entwicklung und Bewertung der absoluten GNSS-Antennenkalibrierung im HF-Labor , 2011 .

[2]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[3]  M. Drinkwater,et al.  GOCE: ESA’s First Earth Explorer Core Mission , 2003 .

[4]  A. S. Ganeshan,et al.  GNSS Satellite Geometry and Attitude Models , 2015 .

[5]  Eric Pottiaux,et al.  Influence of different GPS receiver antenna calibration models on geodetic positioning , 2013, GPS Solutions.

[6]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[7]  Paul E. Carrillo,et al.  The Effects of Different , 2016 .

[8]  Gerhard Wübbena,et al.  Absolute GNSS Antenna Calibration with a Robot : Repeatability of Phase Variations , Calibration of GLONASS and Determination of Carrier-to-Noise Pattern , 2006 .

[9]  Peter Steigenberger,et al.  Impact of higher‐order ionospheric terms on GPS estimates , 2005 .

[10]  Per Jarlemark,et al.  Ground-Based GPS for Validation of Climate Models: The Impact of Satellite Antenna Phase Center Variations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Rune Floberghagen,et al.  VII: CLOSING SESSION: GOCE: ESA's First Earth Explorer Core Mission , 2003 .

[12]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[13]  V. Cachorro,et al.  Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations , 2010 .

[14]  sVN 49 and Other gPs anomalies Elevation-Dependent Pseudorange Errors in Block IIRs and IIR-Ms , 2009 .

[15]  Florian Dilssner,et al.  Estimation of phase center corrections for GLONASS-M satellite antennas , 2010 .

[16]  Peter Steigenberger,et al.  Extension of the GPS satellite antenna patterns to nadir angles beyond 14 , 2012 .

[17]  J. Willis,et al.  The OSTM/Jason-2 Mission , 2010 .

[18]  P. Steigenberger,et al.  Absolute phase center corrections of satellite and receiver antennas , 2005 .

[19]  U. Hugentobler,et al.  Pseudo-Stochastic Orbit Modeling Techniques for Low-Earth Orbiters , 2006 .

[20]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[21]  Gerald L. Mader,et al.  GPS Antenna Calibration at the National Geodetic Survey , 1999, GPS Solutions.

[22]  Martin Schmitz,et al.  Automated Absolute Field Calibration of GPS Antennas in Real-Time , 2000 .

[23]  Oliver Montenbruck,et al.  Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination , 2009 .

[24]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[25]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[26]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[27]  Pascal Willis,et al.  The IGEX-98- campaign: Highlights and perspective , 2000 .

[28]  Ch. Reigber,et al.  Satellite antenna phase center offsets and scale errors in GPS solutions , 2003 .

[29]  Y. Bar-Sever,et al.  Realizing a terrestrial reference frame using the Global Positioning System , 2015 .

[30]  Zuheir Altamimi,et al.  Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters , 2011, Journal of Geodesy.

[31]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[32]  B. Berruti,et al.  The MetOp satellite - Weather information from polar orbit , 2006 .

[33]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[34]  M. Chierici,et al.  Barium and carbon fluxes in the Canadian Arctic Archipelago , 2011 .

[35]  Peter J. Clarke,et al.  Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica , 2011 .

[36]  Xavier Collilieux,et al.  Quality assessment of GPS reprocessed terrestrial reference frame , 2011 .

[37]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[39]  E. Cardellach,et al.  Global distortion of GPS networks associated with satellite antenna model errors , 2007 .

[40]  O. Montenbruck,et al.  IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science , 2013 .

[41]  Martin Schmitz,et al.  Improved antenna phase center models for GLONASS , 2011 .

[42]  Ulrich Meyer,et al.  Phase center modeling and its impact on LEO Precise Orbit Determination , 2009 .

[43]  P. Steigenberger,et al.  Effects of different antenna phase center models on GPS-derived reference frames , 2009 .

[44]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[45]  L. Mervart,et al.  AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS , 2010 .

[46]  K. Kaniuth,et al.  The Impact of Antenna Radomes on Height Estimates in Regional GPS Networks , 2002 .

[47]  M. Rothacher,et al.  Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites , 2003 .

[48]  Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna z-offsets , 2013, GPS Solutions.

[50]  Xavier Collilieux,et al.  Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .