Generalized multiple-point Metropolis algorithms for approximate Bayesian computation

It is well known that the approximate Bayesian computation algorithm based on Markov chain Monte Carlo methods suffers from the sensitivity to the choice of starting values, inefficiency and a low acceptance rate. To overcome these problems, this study proposes a generalization of the multiple-point Metropolis algorithm, which proceeds by generating multiple-dependent proposals and then by selecting a candidate among the set of proposals on the basis of weights that can be chosen arbitrarily. The performance of the proposed algorithm is illustrated by using both simulated and real data.

[1]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[2]  Roberto Casarin,et al.  Interacting multiple try algorithms with different proposal distributions , 2010, Statistics and Computing.

[3]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[4]  Thomas E. Wehrly Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods , 2002, Technometrics.

[5]  Iain Murray Advances in Markov chain Monte Carlo methods , 2007 .

[6]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[7]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[8]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[9]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[10]  Denys Pommeret,et al.  Likelihood-free parallel tempering , 2011, Stat. Comput..

[11]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[12]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[13]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Gilchrist,et al.  Statistical Modelling with Quantile Functions , 2000 .

[15]  Jurgen A. Doornik,et al.  Object-orientd matrix programming using OX , 1996 .

[16]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[17]  S. A. Sisson,et al.  Likelihood-free Bayesian inference for alpha-stable models , 2009 .

[18]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[19]  Francesco Bartolucci,et al.  A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection , 2010, AISTATS.

[20]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[21]  J. Read,et al.  A multi-point Metropolis scheme with generic weight functions , 2011, 1112.4048.

[22]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[23]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[24]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[25]  Marshall Freimer,et al.  a study of the generalized tukey lambda family , 1988 .

[26]  Jun S. Liu,et al.  Multipoint metropolis method with application to hybrid Monte Carlo , 2001 .

[27]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[28]  Luca Martino,et al.  Different acceptance functions for Multiple Try Metropolis schemes , 2012 .

[29]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[30]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[31]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .