Signal and Image Approximation Using Interval Wavelet Transform

In signal approximation, classical wavelet synthesis are known to produce Gibbs-like phenomenon around discontinuities when wavelet coefficients in the cone of influence of the discontinuities are quantized. By analyzing a function in a piecewise manner, filtering across discontinuities can be avoided. Using this principle, the interval wavelet transform can generate sparser representations in the vicinity of discontinuities than classical wavelet transforms. This work introduces two new constructions of interval wavelets and shows how they can be used for image compression and upscaling

[1]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  M. Victor Wickerhauser,et al.  Wavelets: Algorithms and Applications (Yves Meyer) , 1994, SIAM Rev..

[3]  Jürgen Prestin,et al.  Polynomial wavelets on the interval , 1996 .

[4]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[5]  Kevin Amaratunga,et al.  A Discrete Wavelet Transform without edge effects using wavelet extrapolation , 1997 .

[6]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[7]  Cormac Herley,et al.  Boundary filters for finite-length signals and time-varying filter banks , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[8]  John R. Williams,et al.  Time integration using wavelets , 1995, Defense, Security, and Sensing.

[9]  T. Chan,et al.  Eno-Wavelet Transforms and Some Applications , 2003 .

[10]  Jochen Fröhlich,et al.  Orthonormal Polynomial Wavelets on the Interval and Applications to the Analysis of Turbulent Flow Fields , 2003, SIAM J. Appl. Math..

[11]  Martin Vetterli,et al.  Wavelet footprints: theory, algorithms, and applications , 2003, IEEE Trans. Signal Process..

[12]  Stéphane Mallat,et al.  Image compression with geometrical wavelets , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[13]  Bernd Fischer,et al.  Wavelets based on orthogonal polynomials , 1997, Math. Comput..

[14]  Minh N. Do,et al.  Contourlets: a directional multiresolution image representation , 2002, Proceedings. International Conference on Image Processing.

[15]  M. Eden,et al.  On the performance of a contour coding algorithm in the context of image coding part I: Contour segment coding , 1985 .

[16]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[17]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[18]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Michael Unser Approximation power of biorthogonal wavelet expansions , 1996, IEEE Trans. Signal Process..

[21]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[24]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Martin Vetterli,et al.  Footprints and edgeprints for image denoising and compression , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  Otmar Scherzer,et al.  The Construction of Orthonormal Wavelets Using Symbolic Methods and a Matrix Analytical Approach for Wavelets on the Interval , 2001, Exp. Math..

[27]  Robert D. Nowak,et al.  Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging , 2003, IEEE Transactions on Medical Imaging.

[28]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[29]  John S. Baras,et al.  Properties of the multiscale maxima and zero-crossings representations , 1993, IEEE Trans. Signal Process..

[30]  Haomin Zhou,et al.  Adaptive ENO-wavelet transforms for discontinuous functions , 2001 .

[31]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[32]  David L. Donoho,et al.  Curvelets, multiresolution representation, and scaling laws , 2000, SPIE Optics + Photonics.

[33]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .