Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator.

We develop a highly efficient approach for the modulation of photonic signals at the nanoscale, combining an ultrasubwavelength plasmonic guiding scheme with a robust electroabsorption effect in degenerate semiconductors. We numerically demonstrate an active electro-optical field-effect nanoplasmonic modulator with a revolutionary size of just 25 × 30 × 100 nm(3), providing signal extinction ratios as high as 2 at switching voltages of only 1 V. The design is compatible with complementary metal-oxide-semiconductor (CMOS) technology and allows low-loss insertion in standard plasmonic and Si-photonic circuitry.

[1]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[2]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding , 2007 .

[3]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[4]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[5]  L. Dominici,et al.  Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm. , 2009, Optics letters.

[6]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[7]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[8]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[9]  Andrea Alù,et al.  All optical metamaterial circuit board at the nanoscale. , 2009, Physical review letters.

[10]  W. A. Phillips,et al.  Electrical and optical properties of amorphous indium oxide , 1990 .

[11]  Anatoly V. Zayats,et al.  Nonlinear surface plasmon polaritonic crystals , 2008 .

[12]  Yeshaiahu Fainman,et al.  Monolithic nonlinear pulse compressor on a silicon chip. , 2010, Nature communications.

[13]  Alexey V. Krasavin,et al.  Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides , 2010 .

[14]  Anatoly V Zayats,et al.  Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. , 2011, Optics letters.

[15]  A. Willner Optical Fiber Telecommunications IIIB , 1997 .

[16]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[17]  Romain Quidant,et al.  Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. , 2011, Optics express.

[18]  Sunao Torii,et al.  On-Chip Optical Interconnect , 2009, Proceedings of the IEEE.

[19]  Pavel Ginzburg,et al.  Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. , 2006, Optics letters.

[20]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[21]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[22]  Alan E. Willner,et al.  Optical Fiber Telecommunications: Systems and Networks , 2008 .

[23]  Er-Ping Li,et al.  Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components , 2010 .

[24]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[25]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[26]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[27]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[28]  N. Zheludev,et al.  Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations , 2003, cond-mat/0310530.

[29]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[30]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[31]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[32]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[33]  S. Bozhevolnyi Plasmonic nanoguides and circuits , 2008 .

[34]  Zhaolin Lu,et al.  Nanoplasmonic couplers and splitters. , 2009, Optics express.

[35]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[36]  L. Douillard,et al.  Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface. , 2012, Optics express.

[37]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[38]  Andrew G. Glen,et al.  APPL , 2001 .

[39]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[40]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[41]  Anatoly V Zayats,et al.  Silicon-based plasmonic waveguides. , 2010, Optics express.