SO(5) critical point in a spin-flavor Kondo device: Bosonization and refermionization solution

We investigate a well studied system of a quantum dot coupled to a Coulomb box and leads, realizing a spin-flavor Kondo model. It exhibits a recently discovered non-Fermi liquid (NFL) behavior with emergent SO(5) symmetry. Here, through a detailed bosonization and refermionization solution, we push forward our previous work and provide a consistent and complete description of the various exotic properties and phase diagram. A unique NFL phase emerges from the presence of an uncoupled Majorana fermion from the flavor sector, whereas FL-like susceptibilities result from the gapping out of a pair of Majroana fermions from the spin and flavor sectors. Other properties, such as a $T^{3/2}$ scaling of the conductance, stability under channel or spin symmetry breaking and a re-appearance of NFL behavior upon breaking the particle-hole symmetry, are all accounted for by a renormalization group treatment of the refermionized Majorana model.

[1]  A. Georges,et al.  How to measure the entropy of a mesoscopic system via thermoelectric transport , 2019, Nature Communications.

[2]  Saeed Fallahi,et al.  Direct entropy measurement in a mesoscopic quantum system , 2018, Nature Physics.

[3]  U. Gennser,et al.  Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit , 2017, Science.

[4]  A. Cavanna,et al.  Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states , 2015, Nature.

[5]  D. Goldhaber-Gordon,et al.  Universal Fermi liquid crossover and quantum criticality in a mesoscopic system , 2015, Nature.

[6]  H. Shtrikman,et al.  Observation of the SU(4) Kondo state in a double quantum dot , 2013, 1306.6326.

[7]  G. Finkelstein,et al.  Su(4) mixed valence regime in carbon nanotube quantum dots , 2008 .

[8]  Y. Liu,et al.  Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot , 2008 .

[9]  Y. Oreg,et al.  Observation of the two-channel Kondo effect , 2006, Nature.

[10]  M. Vojta Impurity quantum phase transitions , 2004, cond-mat/0412208.

[11]  Tomoya Sato,et al.  Numerical renormalization group studies of SU(4) Kondo effect in quantum dots , 2005 .

[12]  J. Kong,et al.  Orbital Kondo effect in carbon nanotubes , 2005, Nature.

[13]  Eran Lebanon,et al.  Coulomb blockade and quantum critical points in quantum dots , 2004, cond-mat/0406316.

[14]  Tarucha,et al.  The kondo effect in the unitary limit , 2000, Science.

[15]  Kouwenhoven,et al.  A tunable kondo effect in quantum dots , 1998, Science.

[16]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[17]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .

[18]  J. Cardy Scaling and Renormalization in Statistical Physics by John Cardy , 1996 .

[19]  H. Georgi Lie Algebras in Particle Physics: From Isospin to Unified Theories , 1994 .

[20]  M. Springford The Kondo problem to heavy fermions , 1993 .

[21]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions by Alexander Cyril Hewson , 1993 .