Computational Methods for Parachute Fluid–Structure Interactions

The computational challenges posed by fluid–structure interaction (FSI) modeling of parachutes include the lightness of the parachute canopy compared to the air masses involved in the parachute dynamics, in the case of “ringsail” parachutes the geometric complexities created by the construction of the canopy from “rings” and “sails” with hundreds of ring “gaps” and sail “slits”, and in the case of parachute clusters the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling () has successfully addressed these computational challenges with the Stabilized Space–Time FSI (SSTFSI) technique, which was developed and improved over the years by the and serves as the core numerical technology, and a number of special techniques developed in conjunction with the SSTFSI technique. The quasi-direct and direct coupling techniques developed by the , which are applicable to cases with incompatible fluid and structure meshes at the interface, yield more robust algorithms for FSI computations where the structure is light and therefore more sensitive to the variations in the fluid dynamics forces. The special technique used in dealing with the geometric complexities of the rings and sails is the Homogenized Modeling of Geometric Porosity, which was developed and improved in recent years by the . The Surface-Edge-Node Contact Tracking (SENCT) technique was introduced by the as a contact algorithm where the objective is to prevent the structural surfaces from coming closer than a minimum distance in an FSI computation. The recently-introduced conservative version of the SENCT technique is more robust and is now an essential technology in the parachute cluster computations carried out by the . We provide an overview of the core and special techniques developed by the , present single-parachute FSI computations carried out for design-parameter studies, and report FSI computation and dynamical analysis of two-parachute clusters.

[1]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[2]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[3]  Thomas J. R. Hughes,et al.  A case study in parallel computation: Viscous flow around an ONERA M6 wing , 1995 .

[4]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[5]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[6]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[7]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[8]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[9]  Tayfun E. Tezduyar,et al.  Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview , 2007 .

[10]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[11]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment , 2006 .

[12]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[13]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[14]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[15]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[16]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[17]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[18]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[19]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[20]  Richard Benney,et al.  Computational methods for modeling parachute systems , 2003, Comput. Sci. Eng..

[21]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[22]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[23]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[24]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[25]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[26]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[27]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[28]  Michael L. Accorsi,et al.  CURRENT 3-D STRUCTURAL DYNAMIC FINITE ELEMENT MODELING CAPABILITIES , 1997 .

[29]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[30]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[31]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .

[32]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[33]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[34]  Tayfun E. Tezduyar,et al.  Parallel Computation of Parachute Fluid-Structure Interactions , 1997 .

[35]  Tayfun E. Tezduyar,et al.  Space–time SUPG finite element computation of shallow-water flows with moving shorelines , 2011 .

[36]  Alvaro L. G. A. Coutinho,et al.  Compressible flow SUPG parameters computed from element matrices , 2005 .

[37]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[38]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[39]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[40]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[41]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[42]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[43]  Toshiaki Hisada,et al.  Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method , 2007 .

[44]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[45]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[46]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[47]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[48]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[49]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[50]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[51]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[52]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[53]  Alvaro L. G. A. Coutinho,et al.  Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices , 2006 .

[54]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[55]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[56]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[57]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[58]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[59]  J. G. Kennedy,et al.  Computation of incompressible flows with implicit finite element implementations on the Connection Machine , 1993 .

[60]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[61]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[62]  H. Bungartz,et al.  An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids , 2008 .

[63]  S. Takeuchi,et al.  Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow , 2010 .

[64]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[65]  Genki Yagawa,et al.  Parallel computing of high‐speed compressible flows using a node‐based finite‐element method , 2003 .

[66]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[67]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[68]  Katsuji Tanizawa,et al.  Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids , 2007 .

[69]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[70]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[71]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[72]  Genki Yagawa,et al.  Accurate fluid-structure interaction computations using elements without mid-side nodes , 2011 .

[73]  Michael L. Accorsi,et al.  Fluid-Structure Interactions of a Round Parachute: Modeling and Simulation Techniques , 2001 .

[74]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[75]  Gregory M. Hulbert,et al.  New Methods in Transient Analysis , 1992 .

[76]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[77]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[78]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[79]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[80]  Murat Manguoglu,et al.  A parallel sparse algorithm targeting arterial fluid mechanics computations , 2011 .

[81]  Tayfun E. Tezduyar,et al.  Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids , 2007 .

[82]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[83]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[84]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[85]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[86]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[87]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[88]  Alain Lo Nonlinear dynamic analysis of cable and membrane structures , 1981 .

[89]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[90]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[91]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[92]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[93]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[94]  Murat Manguoglu,et al.  Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement , 2011 .

[95]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[96]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[97]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[98]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[99]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[100]  Creighton J. Moorman,et al.  Fluid-Structure Interaction Modeling of the Orion Spacecraft Parachutes , 2010 .

[101]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[102]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[103]  Marek Behr,et al.  Finite element solution strategies for large-scale flow simulations☆ , 1994 .

[104]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[105]  Marek Behr,et al.  Implementation of implicit finite element methods for incompressible flows on the CM-5 , 1994 .

[106]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[107]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[108]  Tomohiro Sawada,et al.  LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh , 2011 .

[109]  Michael Schäfer,et al.  Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach , 2008 .

[110]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[111]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[112]  Tayfun E. Tezduyar,et al.  Stabilization Parameters and Smagorinsky Turbulence Model , 2003 .

[113]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[114]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[115]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[116]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[117]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[118]  Tayfun E. Tezduyar,et al.  Enhanced-discretization Selective Stabilization Procedure (EDSSP) , 2006 .

[119]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[120]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[121]  E. Oñate,et al.  Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM , 2008 .

[122]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[123]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[124]  Tayfun E. Tezduyar,et al.  Aerodynamic Interactions Between Parachute Canopies , 2003 .

[125]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[126]  E. Oñate,et al.  FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers , 2006 .

[127]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[128]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[129]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[130]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[131]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[132]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[133]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[134]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[135]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[136]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[137]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .