Theory of plasma transport in toroidal confinement systems

The dissipation induced by coulomb-collisional scattering provides an irreducible minimum, and thus a useful standard for comparison, for transport processes in a hot, magnetically confined plasma. The kinetic description of this dissipation is provided by an equation of the Fokker--Planck form. Approximate solution of the Fokker--Planck equation permits the calculation of transport coeffients which linearly relate the fluxes of particles, energy, and electric charge, to the density and temperature gradients, and to the electric field. The theory relations are useful in studying the confinement properties of present and future experimental devices for research in controlled thermonuclear fusion. The relevant features of magnetic confinement in closed (toroidal) systems, and of charged particles in spatially varying fields, are derived, from first principles. Major emphasis is placed on the ''neoclassical'' theory which has been developed over the last decade. Neoclassical transport coefficients are specifically relevant to a magnetically confined plasma, rather than to just a magnetized plasma; their unusual features, such as nonlocality and geometry dependence, become particularly important in the high temperature regime of proposed thermonuclear reactors. The area of neoclassical theory which seems most complete: its application to axisymmetric tokamak-type confinement systems: is correspondingly stressed. (AIP)

[1]  THE RADIATIVE AND CONDUCTIVE OPACITIES UNDER WHITE DWARF CONDITIONS , 1941 .

[2]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[3]  Lyman Spitzer,et al.  THE ELECTRICAL CONDUCTIVITY OF AN IONIZED GAS , 1950 .

[4]  L. Spitzer Equations of Motion for an Ideal Plasma. , 1952 .

[5]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[6]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  Controlled Fusion Research-An Application of the Physics of High Temperature Plasmas , 1956, Proceedings of the IRE.

[8]  M. Rosenbluth,et al.  Stability of plasmas confined by magnetic fields , 1957 .

[9]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[10]  M. Kruskal,et al.  Hydromagnetic instability in a stellarator , 1958 .

[11]  M. Rosenbluth,et al.  Plasma Diffusion in a Magnetic Field , 1958 .

[12]  M. Kruskal,et al.  Equilibrium of a Magnetically Confined Plasma in a Toroid , 1958 .

[13]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .

[14]  E. W. Laing,et al.  Equilibrium configurations of a toroidal plasma , 1959 .

[15]  A. Lenard ON BOGOLIUBOV'S KINETIC EQUATION FOR A SPATIALLY HOMOGENEOUS PLASMA , 1960 .

[16]  John L. Johnson,et al.  Determination of Hydromagnetic Equilibria , 1961 .

[17]  J. Taylor Diffusion of Plasma Ions across a Magnetic Field , 1961 .

[18]  S. Hamada,et al.  Hydromagnetic equilibria and their proper coordinates , 1962 .

[19]  I. Bernstein,et al.  A VARIATIONAL DESCRIPTION OF TRANSPORT PHENOMENA IN A PLASMA , 1962 .

[20]  T. Northrop Adiabatic charged‐particle motion , 1963 .

[21]  R. Klíma О ДВИжЕНИИ ЧАстц В сИММЕтРИЧНых пОльх , 1965 .

[22]  J. Taylor,et al.  ADIABATIC INVARIANTS AND THE EQUILIBRIUM OF MAGNETICALLY TRAPPED PARTICLES. 2. MATHEMATICAL DETAILS. , 1967 .

[23]  A. Baños The guiding centre approximation in lowest order , 1967, Journal of Plasma Physics.

[24]  H. Berk,et al.  Velocity Space Instabilities in a Toroidal Geometry , 1967 .

[25]  J. Taylor,et al.  Single Particle Motion in Toroidal Stellarator Fields , 1967 .

[26]  H. Grad TOROIDAL CONTAINMENT OF A PLASMA. , 1967 .

[27]  E. Frieman,et al.  Drift Instabilities in General Magnetic Field Configurations , 1968 .

[28]  C. Su,et al.  Collisional Damping of a Plasma Echo , 1968 .

[29]  Binary collision losses in stellarators , 1969 .

[30]  F. Hinton,et al.  Electrical conductivity of plasma in a spatially inhomogeneous magnetic field , 1969 .

[31]  M. Rosenbluth,et al.  PLASMA DIFFUSION IN A TOROIDAL STELLARATOR. , 1969 .

[32]  M. Rosenbluth,et al.  Thermal Equilibrium and Stability of Tokamak Discharges , 1970 .

[33]  H. Wimmel Energy-balance equation and enhanced collisional plasma diffusion , 1970 .

[34]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[35]  T. Stringer Equilibrium Diffusion Rate in a Toroidal Plasma at Intermediate Collision Frequencies , 1970 .

[36]  Harold P. Furth,et al.  Adiabatic Compression of Tokamak Discharges , 1970 .

[37]  M. Rosenbluth,et al.  EFFECT OF LONGITUDINAL ELECTRIC FIELD ON TOROIDAL DIFFUSION. , 1970 .

[38]  E. Frieman Collisional Diffusion in Nonaxisymmetric Toroidal Systems , 1970 .

[39]  A. Ware Pinch-Effect Oscillations in an Unstable Tokamak Plasma , 1970 .

[40]  P. Rutherford COLLISIONAL DIFFUSION IN AN AXISYMMETRIC TORUS. , 1970 .

[41]  J. W. Connor,et al.  Diffusion Driven Plasma Currents and Bootstrap Tokamak , 1971 .

[42]  ELECTRICAL CONDUCTIVITY IN TOROIDAL PLASMA WITH TRAPPED PARTICLES. , 1971 .

[43]  Boris B. Kadomtsev,et al.  Trapped particles in toroidal magnetic systems , 1971 .

[44]  M. Rosenbluth,et al.  Effect of Field Asymmetry on Neoclassical Transport in a Tokamak , 1972 .

[45]  Harold P. Furth,et al.  Adiabatic compression of the tokamak discharge , 1972 .

[46]  E. Maschke Classical thermal conductivity of a stationary toroidal plasma , 1972 .

[47]  Marshall N. Rosenbluth,et al.  Plasma Transport in Toroidal Confinement Systems , 1972 .

[48]  T. H. Stix,et al.  Decay of poloidal rotation in a tokamak plasma , 1973 .

[49]  R. Hazeltine Recursive derivation of drift-kinetic equation. , 1973 .

[50]  A universal Ohm's law for tokamak plasmas , 1973 .

[51]  P. M. Keeping,et al.  The conductivity of a toroidal plasma , 1973 .

[52]  Marshall N. Rosenbluth,et al.  Transport properties of a toroidal plasma at low‐to‐intermediate collision frequencies , 1973 .

[53]  F. Hinton,et al.  Collision-dominated plasma transport in toroidal confinement systems , 1973 .

[54]  J. Connor,et al.  The neo-classical transport theory of a plasma with multiple ion species , 1973 .

[55]  A. Glasser,et al.  Neoclassical plasma transport in axisymmetric toroidal systems , 1973 .

[56]  J. Connor,et al.  Neoclassical diffusion arising from magnetic-field ripples in Tokamaks , 1973 .

[57]  Collisional resistivity in low aspect ratio tori , 1973 .

[58]  Marshall N. Rosenbluth,et al.  Plasma transport in a torus of arbitrary aspect ratio , 1973 .

[59]  I. Bernstein Transport in axisymmetric plasmas , 1974 .

[60]  J. Connor,et al.  Neoclassical diffusion in an l = 3 stellarator , 1974 .

[61]  G. Joyce,et al.  Magnetic field dependence of plasma relaxation times , 1974 .

[62]  Impurity transport in tokamaks in the banana-plateau regime , 1974 .

[63]  J. F. Clarke,et al.  Hot-ion distribution function in the Oak Ridge tokamak , 1974 .

[64]  R. Hazeltine,et al.  Rotation of a toroidally confined, collisional plasma , 1974 .

[65]  P. Rutherford Impurity transport in the Pfirsch-Schluter regime , 1974 .

[66]  F. Hinton,et al.  Transport properties of a toroidal plasma at intermediate‐to‐high collision frequencies , 1975 .