Boolean Circuits, Tensor Ranks, and Communication Complexity

We investigate two methods for proving lower bounds on the size of small-depth circuits, namely the approaches based on multiparty communication games and algebraic characterizations extending the concepts of the tensor rank and rigidity of matrices. Our methods are combinatorial, but we think that our main contribution concerns the algebraic concepts used in this area (tensor ranks and rigidity). Our main results are following. (i) An $o(n)$-bit protocol for a communication game for computing shifts, which also gives an upper bound of $o(n^2)$ on the contact rank of the tensor of multiplication of polynomials; this disproves some earlier conjectures. A related probabilistic construction gives an $o(n)$ upper bound for computing all permutations and an $O(n\log\log n)$ upper bound on the communication complexity of pointer jumping with permutations. (ii) A lower bound on certain restricted circuits of depth 2 which are related to the problem of proving a superlinear lower bound on the size of logarithmic-depth circuits; this bound has interpretations both as a lower bound on the rigidity of the tensor of multiplication of polynomials and as a lower bound on the communication needed to compute the shift function in a restricted model. (iii) An upper bound on Boolean circuits of depth 2 for computing shifts and, more generally, all permutations; this shows that such circuits are more efficient than the model based on sending bits along vertex-disjoint paths.

[1]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[2]  D. V. Chudnovsky,et al.  Algebraic complexities and algebraic curves over finite fields , 1987 .

[3]  Nicholas Pippenger The Complexity of Computations by Networks , 1987, IBM J. Res. Dev..

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[6]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[7]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[8]  Jirí Sgall,et al.  Some bounds on multiparty communication complexity of pointer jumping , 1998, computational complexity.

[9]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[10]  L. Valiant Why is Boolean complexity theory difficult , 1992 .

[11]  Leslie G. Valiant,et al.  Shifting Graphs and Their Applications , 1976, J. ACM.

[12]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[13]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[14]  Noga Alon,et al.  Superconcentrators of Depths 2 and 3; Odd Levels Help (Rarely) , 1994, J. Comput. Syst. Sci..

[15]  Aiken,et al.  Why is Boolean Complexity Theory Di cult ? , 1992 .

[16]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[17]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[18]  Noam Nisan,et al.  Rounds in Communication Complexity Revisited , 1993, SIAM J. Comput..

[19]  Andris Ambainis Upper Bounds on Multiparty Communication Complexity of Shifts , 1996, STACS.

[20]  Vojtech Rödl,et al.  Modified ranks of tensors and the size of circuits , 1993, STOC '93.

[21]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[22]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[24]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[25]  A. Yao,et al.  Rearrangeable Networks with Limited Depth , 1982 .

[26]  Joel Friedman,et al.  A note on matrix rigidity , 1993, Comb..

[27]  Victor Shoup,et al.  Lower bounds for polynomial evaluation and interpolation problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[28]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[29]  Satyanarayana V. Lokam,et al.  Simultaneous Messages vs. Communication , 1995, STACS.

[30]  Pavel Pudlák,et al.  On shifting networks , 1993, Theor. Comput. Sci..

[31]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[32]  Amin Shokrollahi Beiträge zur Codierungs- und Komplexitätstheorie mittels algebraischer Funktionenkörper , 1991 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.