Electrochemical Biosensors - Sensor Principles and Architectures

Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.

[1]  Daniel L Graham,et al.  Magnetoresistive-based biosensors and biochips. , 2004, Trends in biotechnology.

[2]  Akira Baba,et al.  Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films , 2002 .

[3]  Won Jun Sung,et al.  Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant , 2006 .

[4]  A. Bard,et al.  Scanning electrochemical microscopy. Introduction and principles , 1989 .

[5]  Ruo Yuan,et al.  Direct Electrochemical Immunoassay Based on Immobilization of Protein-Magnetic Nanoparticle Composites on to Magnetic Electrode Surfaces by Sterically Enhanced Magnetic Field Force , 2006, Biotechnology Letters.

[6]  Jian-ping Li,et al.  A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in a Silicic Sol‐Gel Matrix at a Prussian Blue Modified Electrode , 2003 .

[7]  A. Michael,et al.  Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel , 2006 .

[8]  Brian B Haab,et al.  Antibody Arrays in Cancer Research , 2005, Molecular & Cellular Proteomics.

[9]  Minho Lee,et al.  ISFET glucose sensor system with fast recovery characteristics by employing electrolysis , 2002 .

[10]  Michael S Wilson,et al.  Electrochemical immunosensors for the simultaneous detection of two tumor markers. , 2005, Analytical chemistry.

[11]  Kuznetsov,et al.  On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. , 2001, Biosensors & bioelectronics.

[12]  L. Abrantes,et al.  Immunosensor interface based on physical and chemical immunoglobulin G adsorption onto mixed self-assembled monolayers. , 2006, Bioelectrochemistry.

[13]  J. W. Parce,et al.  Light-addressable potentiometric sensor for biochemical systems. , 1988, Science.

[14]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[15]  D. Nikolelis,et al.  Ammonium ion minisensors form self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor. , 1996, Analytical chemistry.

[16]  M. Textor,et al.  Biofunctional Polyelectrolyte Multilayers and Microcapsules: Control of Non‐Specific and Bio‐Specific Protein Adsorption , 2005 .

[17]  B D Ratner,et al.  Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. , 2003, Biomaterials.

[18]  W. Lorenz,et al.  Zur anwendung der transformations—impedanzspektrometrie , 1975 .

[19]  Anthony Watts,et al.  Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu(1-32) from HIV-1. , 2004, Journal of the American Chemical Society.

[20]  B Sohn,et al.  ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers , 1998 .

[21]  A. Offenhäusser,et al.  Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy. , 2002, Biosensors & bioelectronics.

[22]  Andreas Offenhäusser,et al.  Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices , 2005 .

[23]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[24]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.

[25]  J. Janata,et al.  Field effect transistor sensitive to penicillin , 1980 .

[26]  G. Mcallister,et al.  Orphan G-protein-coupled receptors and natural ligand discovery. , 2001, Trends in pharmacological sciences.

[27]  Erik Reimhult,et al.  Membrane biosensor platforms using nano- and microporous supports. , 2008, Trends in biotechnology.

[28]  Eric Bakker,et al.  Electrochemical sensors. , 2002, Analytical chemistry.

[29]  Josep Samitier,et al.  FET‐Based Chemical Sensor Systems Fabricated with Standard Technologies , 2004 .

[30]  Anthony Guiseppi-Elie,et al.  Frequency dependent and surface characterization of DNA immobilization and hybridization. , 2004, Biosensors & bioelectronics.

[31]  C. Ó’Fágáin Enzyme stabilization: recent experimental progress , 2003 .

[32]  Chang-Soo Kim,et al.  ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide , 1997 .

[33]  Dietmar Drung,et al.  A SQUID measurement system for immunoassays , 1999 .

[34]  J. Hubbell,et al.  Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips. , 2003, Biotechnology and bioengineering.

[35]  H. Elwing Protein Adsorption and Ellipsometry in Biomaterial Research , 1998 .

[36]  D. Kriz,et al.  Magnetic Transducers in Biosensors and Bioassays , 1999 .

[37]  Gerd Ritter,et al.  Real-Time, label-free monitoring of tumor antigen and serum antibody interactions. , 2004, Journal of biochemical and biophysical methods.

[38]  Ernö Pretsch,et al.  Potentiometric sensors for trace-level analysis. , 2005, Trends in analytical chemistry : TRAC.

[39]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[40]  N. Chaniotakis,et al.  Novel carbon materials in biosensor systems. , 2003, Biosensors & bioelectronics.

[41]  B. Mizaikoff,et al.  Integrated AFM-SECM in tapping mode: simultaneous topographical and electrochemical imaging of enzyme activity. , 2003, Angewandte Chemie.

[42]  I. Willner,et al.  An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor. , 2000, Biosensors & bioelectronics.

[43]  Horst Vogel,et al.  Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes. , 1999, Angewandte Chemie.

[44]  P. Garris,et al.  Scanning electrochemical microscopy of model neurons: constant distance imaging. , 2005, Analytical chemistry.

[45]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[46]  V. Torchilin,et al.  Targeted polymeric micelles for delivery of poorly soluble drugs , 2004, Cellular and Molecular Life Sciences CMLS.

[47]  Joanne I. Yeh,et al.  Nanowiring of a redox enzyme by metallized peptides. , 2005, Biosensors & bioelectronics.

[48]  Marcus Textor,et al.  A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation , 2002 .

[49]  B. Mizaikoff,et al.  Amperometric ATP biosensor based on polymer entrapped enzymes. , 2004, Biosensors & bioelectronics.

[50]  Guo-Li Shen,et al.  An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. , 2004, Bioelectrochemistry.

[51]  R. Benz,et al.  Interaction of Clostridium perfringensIota-Toxin with Lipid Bilayer Membranes , 2002, Journal of Biological Chemistry.

[52]  Richard J. Colton,et al.  Biosensor based on force microscope technology , 1996 .

[53]  R. Buck,et al.  Modified Cottrell behavior in thin layers: Applied voltage steps under diffusion control for constant-resistance systems , 1992 .

[54]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[55]  H. Hug,et al.  Advances in recombinant antibody microarrays. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[56]  J. Wu,et al.  Effects of quantum confinement on the doping limit of semiconductor nanowires. , 2007, Nano letters.

[57]  S. Ichikawa,et al.  Enzymes inside lipid vesicles: preparation, reactivity and applications. , 2001, Biomolecular engineering.

[58]  R. Wightman,et al.  Electrochemical monitoring of biogenic amine neurotransmission in real time. , 1999, Journal of pharmaceutical and biomedical analysis.

[59]  M. Kunitake,et al.  Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode , 2004 .

[60]  B. Mizaikoff,et al.  Mapping of enzyme activity by detection of enzymatic products during AFM imaging with integrated SECM-AFM probes. , 2004, Ultramicroscopy.

[61]  J. Niedziela,et al.  Scanning Tunneling Microscopy , 2008 .

[62]  J. Creeth,et al.  Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. , 1997, Biochimica et biophysica acta.

[63]  P. Estrela,et al.  Field effect detection of biomolecular interactions , 2005 .

[64]  S. Dong,et al.  A novel electrochemical SPR biosensor , 2001 .

[65]  K. Kataoka,et al.  Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[66]  A. Plant,et al.  Reconstitution of the Pore-Forming Toxin α-Hemolysin in Phospholipid/18-Octadecyl-1-thiahexa(ethylene oxide) and Phospholipid/n-Octadecanethiol Supported Bilayer Membranes , 2000 .

[67]  A. Merkoçi Electrochemical biosensing with nanoparticles , 2007, The FEBS journal.

[68]  Conductance of quantum wires : A numerical study of effects of an impurity and interactions , 2005, cond-mat/0507097.

[69]  Jean-François Bergamini,et al.  In situ EC-AFM imaging of cathodic modifications of platinum surfaces performed in dimethylformamide , 2004 .

[70]  Landauer formula without Landauer's assumptions , 2003, cond-mat/0312449.

[71]  J. Heyrovský The development of polarographic analysis , 1956 .

[72]  Dipankar Ghosh,et al.  Amperometric biosensors for detection of the prostate cancer marker (PSA). , 2002, International journal of pharmaceutics.

[73]  Michael Keusgen,et al.  CRP determination based on a novel magnetic biosensor. , 2007, Biosensors & bioelectronics.

[74]  Huangxian Ju,et al.  Electrochemical and chemiluminescent immunosensors for tumor markers. , 2005, Biosensors & bioelectronics.

[75]  I. Willner,et al.  Enzyme monolayer-functionalized field-effect transistors for biosensor applications , 2000 .

[76]  B. Eggins Analytical Techniques in the Sciences , 2002 .

[77]  A. Bott Characterization of Films Immobilized on an Electrode Surface Using the Electrochemical Quartz Crystal Microbalance , 2000 .

[78]  Itamar Willner,et al.  "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle , 2003, Science.

[79]  Eric M. Vogel,et al.  Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors , 2005 .

[80]  Itamar Willner,et al.  Long-range electrical contacting of redox enzymes by SWCNT connectors. , 2004, Angewandte Chemie.

[81]  M. Textor,et al.  Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption , 1997 .

[82]  Donghai Wang,et al.  Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes. , 2005, Journal of nanoscience and nanotechnology.

[83]  Christopher R. Lowe,et al.  Multi-analyte miniature conductance biosensor , 1990 .

[84]  Fuan Wang,et al.  Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR , 2007 .

[85]  P. Nair,et al.  Dimensionally frustrated diffusion towards fractal adsorbers. , 2007, Physical review letters.

[86]  H. Elwing,et al.  Protein absorption and ellipsometry in biomaterial research. , 1998, Biomaterials.

[87]  I. Karube,et al.  Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. , 1996, Biosensors & bioelectronics.

[88]  Michael J. Schöning,et al.  Detecting Both Physical and (Bio‐)Chemical Parameters by Means of ISFET Devices , 2004 .

[89]  F. Lisdat,et al.  Electrochemical Quartz Crystal Microbalance Studies on Cytochrome c/Polyelectrolyte Multilayer Assemblies on Gold Electrodes , 2005 .

[90]  Gil U. Lee,et al.  Scanning probe microscopy. , 2010, Current opinion in chemical biology.

[91]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[92]  B. Cornell,et al.  A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors. , 2003, Biosensors & bioelectronics.

[93]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[94]  V. Král,et al.  Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor. , 2007, Biosensors & bioelectronics.

[95]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[96]  W. Knoll,et al.  Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. , 2004, Journal of the American Chemical Society.

[97]  A. Bard,et al.  Scanning electrochemical microscopy. Theory of the feedback mode , 1989 .

[98]  A. Bard,et al.  Scanning electrochemical microscopy. Apparatus and two-dimensional scans of conductive and insulating substrates , 1989 .

[99]  K. Martini,et al.  An undergraduate laboratory experiment on quantized conductance in nanocontacts , 1999 .

[100]  Michael J. Schöning,et al.  Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions , 2006 .

[101]  John D. Brennan,et al.  Properties and applications of proteins encapsulated within sol–gel derived materials , 2002 .

[102]  E. Zacco,et al.  Electrochemical biosensing based on universal affinity biocomposite platforms. , 2006, Biosensors & bioelectronics.

[103]  Yanbin Li,et al.  AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7. , 2005, Biosensors & bioelectronics.

[104]  W. Meier,et al.  Controlling membrane permeability with bacterial porins: application to encapsulated enzymes. , 2001, Talanta.

[105]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[106]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[107]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[108]  R. Pei,et al.  Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. , 2001, Biosensors & bioelectronics.

[109]  Adam Heller,et al.  On the parameters affecting the characteristics of the "wired" glucose oxidase anode , 2005 .

[110]  B. Mizaikoff,et al.  AFM-tip-integrated amperometric microbiosensors: high-resolution imaging of membrane transport. , 2005, Angewandte Chemie.

[111]  John R LaGraff,et al.  Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[112]  B. D. Malhotra,et al.  Mediated biosensors. , 2002, Biosensors & bioelectronics.

[113]  Rolf Schumacher,et al.  The Quartz Microbalance: A Novel Approach to the In‐Situ Investigation of Interfacial Phenomena at the Solid/Liquid Junction [New Analytical Methods (40)] , 1990 .

[114]  S. Dong,et al.  ORGANIC-PHASE ENZYME ELECTRODE OPERATED IN WATER-FREE SOLVENTS , 1994 .

[115]  John Alderman,et al.  A DNA diagnostic biosensor: development, characterisation and performance , 2000 .

[116]  Gerald J. Meyer,et al.  Biological applications of high aspect ratio nanoparticles , 2004 .

[117]  R. Lal,et al.  Conducting polymer-based biosensors , 1994 .

[118]  David K. Gosser,et al.  Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms , 1993 .

[119]  Michael Börsch,et al.  Real-time pH microscopy down to the molecular level by combined scanning electrochemical microscopy/single-molecule fluorescence spectroscopy. , 2004, Analytical chemistry.

[120]  S. Yao,et al.  Symmetric current oscillations at tip and substrate electrodes of scanning electrochemical microscope during silver deposition/stripping , 2005 .

[121]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[122]  N. Chaniotakis,et al.  Stabilization of enzymes in nanoporous materials for biosensor applications. , 2005, Biosensors & bioelectronics.

[123]  Wen-Yaw Chung,et al.  Glucose ENFET doped with MnO2 powder , 2001 .

[124]  Gyu-Chul Yi,et al.  ZnO nanorods: synthesis, characterization and applications , 2005 .

[125]  Ichiro Chibata,et al.  Trends in Biotechnology , 1982 .

[126]  M. Trojanowicz,et al.  Miniaturized biochemical sensing devices based on planar bilayer lipid membranes , 2001, Fresenius' journal of analytical chemistry.

[127]  Stephen J. Lee,et al.  Conformationally Gated Electrochemical Gene Detection , 2004, Chembiochem : a European journal of chemical biology.

[128]  A. Bard,et al.  Scanning electrochemical microscopy. 36. A combined scanning electrochemical microscope-quartz crystal microbalance instrument for studying thin films. , 1998, Analytical chemistry.

[129]  D. Chan,et al.  Immunosensors--principles and applications to clinical chemistry. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[130]  Gengfeng Zheng,et al.  Nanowire-Based Nanoelectronic Devices in the Life Sciences , 2007 .

[131]  C. Kriz,et al.  Magnetic permeability measurements in bioanalysis and biosensors. , 1996, Analytical chemistry.

[132]  H. Galla,et al.  Interaction of melittin with solid supported membranes , 2000 .

[133]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[134]  Michael J. Schöning,et al.  Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? , 2001 .

[135]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[136]  R. Landauer,et al.  Conductance determined by transmission: probes and quantised constriction resistance , 1989 .

[137]  D. Beaglehole,et al.  Imaging Ellipsometry/Reflectometry for Profiling the Shape of a Deformable Droplet as It Approaches an Interface , 1999 .

[138]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[139]  Ana M Azevedo,et al.  Horseradish peroxidase: a valuable tool in biotechnology. , 2003, Biotechnology annual review.

[140]  B. Eggins Chemical Sensors and Biosensors , 2002 .

[141]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[142]  A. Poghossian,et al.  Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure , 1997 .

[143]  Nicole Jaffrezic-Renault,et al.  A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads on gold surface for the detection of atrazine , 2006 .

[144]  R. Georgiadis,et al.  The effect of surface probe density on DNA hybridization. , 2001, Nucleic acids research.

[145]  Lei Wu,et al.  Ion-channel assay technologies: quo vadis? , 2001, Drug discovery today.

[146]  P. Unwin,et al.  Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy. , 2001, Analytical chemistry.

[147]  Mischa Megens,et al.  Magnetic biochips: a new option for sensitive diagnostics , 2005 .

[148]  P. Unwin,et al.  Combined scanning electrochemical-atomic force microscopy. , 2000, Analytical Chemistry.

[149]  E. Lai,et al.  Surface plasmon resonance-based immunoassays. , 2000, Methods.

[150]  Feng Yan,et al.  Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen. , 2004, Journal of immunological methods.

[151]  Y. Chai,et al.  A novel and simple biomolecules immobilization method: electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor. , 2007, Journal of biotechnology.

[152]  S. Muyldermans,et al.  Naturally occurring antibodies devoid of light chains , 1993, Nature.

[153]  G. Sukhorukov,et al.  Polyelectrolyte multilayer capsules as vehicles with tunable permeability. , 2004, Advances in colloid and interface science.

[154]  K. Marx,et al.  Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. , 2003, Biomacromolecules.

[155]  Itamar Willner,et al.  Enzyme-Linked Amplified Electrochemical Sensing of Oligonucleotide−DNA Interactions by Means of the Precipitation of an Insoluble Product and Using Impedance Spectroscopy , 1999 .

[156]  Zhiqiang Gao,et al.  Nanoparticles in biomolecular detection , 2006 .

[157]  The frequency response of QCM in electrochemically characterizing the immobilization on gold electrode , 2005 .

[158]  N. Chaniotakis,et al.  Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications , 2004, Analytical and bioanalytical chemistry.

[159]  Claus Duschl,et al.  A new class of thiolipids for the attachment of lipid bilayers on gold surfaces , 1994 .

[160]  T. Kowalewski,et al.  Shell cross-linked polymer micelles: stabilized assemblies with great versatility and potential , 1999 .

[161]  Marc Madou,et al.  DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy , 2006 .

[162]  R. Colton,et al.  The BARC biosensor applied to the detection of biological warfare agents. , 2000, Biosensors & bioelectronics.

[163]  César Fernández-Sánchez,et al.  Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development , 2005 .

[164]  P. Bartlett,et al.  An instrument for simultaneous EQCM impedance and SECM measurements. , 2000, Analytical chemistry.

[165]  M. Smyth,et al.  Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. , 1996, The Analyst.

[166]  S Krause,et al.  A transducer based on enzyme-induced degradation of thin polymer films monitored by surface plasmon resonance. , 2000, Analytical chemistry.

[167]  P. Hudson,et al.  Engineered antibody fragments and the rise of single domains , 2005, Nature Biotechnology.

[168]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[169]  Jay W. Grate,et al.  Nanostructures for enzyme stabilization , 2006 .

[170]  Developing biosensors with pH-ISFET transducers utilizing lipid bilayer membranes with transport proteins , 1992 .

[171]  Claude Durrieu,et al.  Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. , 2004, Biosensors & bioelectronics.

[172]  H. Bayley,et al.  Functional engineered channels and pores (Review) , 2004, Molecular membrane biology.

[173]  B. Cornell,et al.  A biosensor that uses ion-channel switches , 1997, Nature.

[174]  Michelle Prevot,et al.  Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[175]  T. Wink,et al.  Self-assembled monolayers for biosensors. , 1997, The Analyst.

[176]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[177]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[178]  David Avnir,et al.  Biochemically active sol-gel glasses: The trapping of enzymes ☆ , 1990 .

[179]  J. W. Schultze,et al.  (Bio-)chemical and physical microsensor arrays using an identical transducer principle , 2001 .

[180]  M. Textor,et al.  Optical grating coupler biosensors. , 2002, Biomaterials.

[181]  Sam F. Y. Li,et al.  A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. , 2003, Biosensors & bioelectronics.

[182]  E. Fábregas,et al.  Determination of β-HCG using amperometric immunosensors based on a conducting immunocomposite , 1999 .

[183]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[184]  J. M. Drake,et al.  Special Issue: Dynamics of Molecular Systems , 1990 .

[185]  Marie-Hélène Dufresne,et al.  Block copolymer micelles: preparation, characterization and application in drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[186]  Brian B Haab,et al.  Applications of antibody array platforms. , 2006, Current opinion in biotechnology.

[187]  G A Rechnitz,et al.  Biomagnetic neurosensors. 3. Noninvasive sensors using magnetic stimulation and biomagnetic detection. , 1995, Analytical chemistry.

[188]  R. Georgiadis,et al.  Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy , 2000 .

[189]  Joseph Wang,et al.  Glucose Biosensors : 40 Years of Advances and Challenges , 2001 .

[190]  E. Reimhult,et al.  Enzymatic Biosensors towards a Multiplexed Electronic Detection System for Early Cancer Diagnostics , 2007, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[191]  Jean-Michel Kauffmann,et al.  Amperometric biosensor based on horseradish peroxidase immobilised magnetic microparticles , 2006 .

[192]  Ilya Sychugov,et al.  Surface charge sensitivity of silicon nanowires: size dependence. , 2007, Nano letters.

[193]  I. Vikholm,et al.  Self-assembly of antibody fragments and polymers onto gold for immunosensing , 2005 .

[194]  Lutz Trahms,et al.  Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticles , 2002 .

[195]  W. Smyrl,et al.  Preparation of a Gold-Sputtered Optical Fiber as a Microelectrode for Electrochemical Microscopy , 1998 .

[196]  Thomas Joos,et al.  Protein microarray technology , 2004, Expert review of proteomics.

[197]  Thierry Livache,et al.  Micro‐Imprinting of Oligonucleotides and Oligonucleotide Gradients on Gold Surfaces: A New Approach Based on the Combination of Scanning Electrochemical Microscopy and Surface Plasmon Resonance Imaging (SECM/ SPR‐i) , 2005 .

[198]  O. Wolfbeis,et al.  Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. , 1997, Biosensors & bioelectronics.

[199]  B. Caldwell,et al.  Detection of Hepatitis C Core Antigen in the Antibody Negative ‘Window’ Phase of Hepatitis C Infection , 2000, Vox Sanguinis.

[200]  P. Peluso,et al.  Optimizing antibody immobilization strategies for the construction of protein microarrays. , 2003, Analytical biochemistry.

[201]  Louis Tiefenauer,et al.  Nanopore Arrays for Stable and Functional Free‐Standing Lipid Bilayers , 2007 .

[202]  H. Solak,et al.  Nanopatterning of gold colloids for label-free biosensing , 2007 .

[203]  L. Nie,et al.  An Amperometric Glucose Biosensor Based on Glucose Oxidase Immobilized in Electropolymerized Poly(o-aminophenol) and Carbon Nanotubes Composite Film on a Gold Electrode , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[204]  Jens Zosel,et al.  Encapsulation of ISFET sensor chips , 2005 .

[205]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[206]  A. Karyakin,et al.  Surfactant bilayers for the direct electrochemical detection of affinity interactions. , 2002, Bioelectrochemistry.

[207]  F. Veer,et al.  Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface , 1978 .

[208]  C. E. Gardner,et al.  Peer Reviewed: Atomic Force Microscopy Probes Go Electrochemical , 2002 .

[209]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[210]  Hans Arwin,et al.  Total internal reflection ellipsometry: principles and applications. , 2004, Applied optics.

[211]  Steven Blake,et al.  Monitoring Chemical Reactions by Using Ion‐Channel‐Forming Peptides , 2006, Chembiochem : a European journal of chemical biology.

[212]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[213]  Adam Heller,et al.  Electrical Connection of Enzyme Redox Centers to Electrodes , 1992 .

[214]  M. Sugawara,et al.  A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor. , 2003, Biosensors & bioelectronics.

[215]  M. Brust,et al.  Electrochemically-controlled waveguide-coupled surface plasmon sensing , 1995 .

[216]  Y. Vlasov,et al.  Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors—a critical review , 2003, Analytical and bioanalytical chemistry.

[217]  W. J. Sung,et al.  A glucose oxidase electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. , 2003, Biosensors & bioelectronics.

[218]  R. Glockshuber,et al.  Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[219]  Peng Sun,et al.  Scanning electrochemical microscopy in the 21st century. , 2007, Physical chemistry chemical physics : PCCP.

[220]  F. Simmel,et al.  Quantum interference in a one-dimensional silicon nanowire , 2003 .

[221]  L. Trahms,et al.  SQUID based remanence measurements for immunoassays , 1997, IEEE Transactions on Applied Superconductivity.

[222]  H. Muguruma,et al.  Structure and biosensor characteristics of complex between glucose oxidase and plasma-polymerized nanothin film. , 2006, Biosensors & bioelectronics.

[223]  C. Shannon,et al.  Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection. , 2000, Analytical chemistry.

[224]  I. Willner,et al.  Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. , 1999, Analytical chemistry.

[225]  Martin Andersson,et al.  Detection of single ion channel activity on a chip using tethered bilayer membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[226]  Brzezinski,et al.  Measurements Using the Quartz Crystal Microbalance Technique of Ferritin Monolayers on Methyl-Thiolated Gold: Dependence of Energy Dissipation and Saturation Coverage on Salt Concentration. , 1998, Journal of colloid and interface science.

[227]  Lutz Trahms,et al.  Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles , 1999 .

[228]  Yan Li,et al.  Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. , 2005, Biosensors & bioelectronics.

[229]  P. Nollert,et al.  Impedance spectroscopy of porin and gramicidin pores reconstituted into supported lipid bilayers on indium-tin-oxide electrodes , 1998 .

[230]  J. V. Bannister,et al.  Amperometric biosensors. , 1990, Journal of biotechnology.

[231]  Bengt Herbert Kasemo,et al.  Biological surface science , 1998 .

[232]  K. Kataoka,et al.  Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium , 1998 .

[233]  P. D'Orazio Biosensors in clinical chemistry. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[234]  I. Willner,et al.  Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA‐Sensors, and Enzyme Biosensors , 2003 .

[235]  Shigeta Hara,et al.  Combined in situ EC-AFM and CV measurement study on lead electrode for lead–acid batteries , 2001 .

[236]  L. C. Clark,et al.  A Personalized History of the Clark Oxygen Electrode , 1987, International anesthesiology clinics.

[237]  Gil U. Lee,et al.  A biosensor based on magnetoresistance technology. , 1998, Biosensors & bioelectronics.

[238]  C. E. Gardner,et al.  Atomic force microscopy probes go electrochemical. , 2002, Analytical chemistry.

[239]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[240]  Michelle A. Brusatori,et al.  Biosensing under an applied voltage using optical waveguide lightmode spectroscopy. , 2003, Biosensors & bioelectronics.

[241]  Plamen Atanasov,et al.  Enzyme‐catalyzed direct electron transfer: Fundamentals and analytical applications , 1997 .

[242]  P Osman,et al.  The ion channel switch biosensor , 1999, Journal of molecular recognition : JMR.

[243]  A. Peterson,et al.  Surface Plasmon Resonance Spectroscopy as a Probe of In-Plane Polymerization in Monolayer Organic Conducting Films , 2000 .

[244]  A. Bard,et al.  Scanning Electrochemical Microscopy. 37. Light Emission by Electrogenerated Chemiluminescence at SECM Tips and Their Application to Scanning Optical Microscopy , 1998 .

[245]  W. Meier,et al.  Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation. , 2001, Biotechnology and bioengineering.

[246]  V. Volotovsky,et al.  Cyanide determination by an ISFET-based peroxidase biosensor. , 1998, Biosensors & bioelectronics.

[247]  Sang-Eun Bae,et al.  In situ EC-STM studies of MPS, SPS, and chloride on Cu100: structural studies of accelerators for dual damascene electrodeposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[248]  H. Xiong,et al.  Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond , 2006, Analytical and bioanalytical chemistry.

[249]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[250]  Wolfgang Knoll,et al.  Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes , 2003 .

[251]  G. Jin,et al.  Influence of electrostatic interaction on fibrinogen adsorption on gold studied by imaging ellipsometry combined with electrochemical methods. , 2005, Journal of colloid and interface science.

[252]  Malcolm R. Haskard,et al.  A very large integrated pH-ISFET sensor array chip compatible with standard CMOS processes , 1997 .

[253]  S. Yao,et al.  Study of protein adsorption on polymer coatings surface by combining quartz crystal microbalance with electrochemical impedance methods , 2005 .

[254]  J. Brugger,et al.  Cell membranes suspended across nanoaperture arrays. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[255]  R. Georgiadis,et al.  In situ kinetics of self-assembly by surface plasmon resonance spectroscopy , 1996 .

[256]  Volker Scheumann,et al.  Probing the Electrochemical Deposition and/or Desorption of Self-Assembled and Electropolymerizable Organic Thin Films by Surface Plasmon Spectroscopy and Atomic Force Microscopy , 1999 .

[257]  C. Egles,et al.  Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. , 2004, Biomaterials.

[258]  P. Unwin,et al.  Correlation of membrane structure and transport activity using combined scanning electrochemical–atomic force microscopy , 2005 .

[259]  Hiroshi Iwasaki,et al.  Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition , 2001 .

[260]  Vladimir P Torchilin,et al.  PEG-based micelles as carriers of contrast agents for different imaging modalities. , 2002, Advanced drug delivery reviews.

[261]  Christof M Niemeyer,et al.  Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. , 2004, Analytical biochemistry.

[262]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[263]  Ingo Köper,et al.  Tethered lipid Bilayers on ultraflat gold surfaces , 2003 .

[264]  R. Georgiadis,et al.  Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[265]  B. Mizaikoff,et al.  Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy. , 2005, Biosensors & bioelectronics.

[266]  Richard J. Bushby,et al.  Electrically insulating pore-suspending membranes on highly ordered porous obtained from vesicle spreading. , 2008, Soft matter.

[267]  M. Mehrvar,et al.  Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[268]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[269]  Michael J. Schöning,et al.  PLD-prepared cadmium sensors based on chalcogenide glasses—ISFET, LAPS and μISE semiconductor structures , 2006 .

[270]  H. Galla,et al.  Impedance analysis of ion transport through gramicidin channels incorporated in solid supported lipid bilayers , 1997 .

[271]  N. Jaffrezic‐Renault,et al.  Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane. , 2006, Biosensors & bioelectronics.

[272]  Wolfgang J. Parak,et al.  Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS) , 2004 .

[273]  Jia-cong Shen,et al.  Spontaneous deposition of horseradish peroxidase into polyelectrolyte multilayer capsules to improve its activity and stability. , 2002, Chemical communications.

[274]  Nicole Jaffrezic-Renault,et al.  Impedance spectroscopy and affinity measurement of specific antibody–antigen interaction , 2006 .

[275]  Donald G. Buerk,et al.  Biosensors: Theory and Applications , 1995 .

[276]  T. Webster,et al.  Comparison of antibody functionality using different immobilization methods , 2003, Biotechnology and bioengineering.

[277]  Mark N. Horenstein,et al.  Microelectronic circuits and devices , 1990 .

[278]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[279]  J M Pingarrón,et al.  A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. , 2005, Analytical biochemistry.

[280]  J. M. McDonnell,et al.  Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. , 2001, Current opinion in chemical biology.

[281]  Yan Liu,et al.  Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode , 2006 .

[282]  Ulrik B Nielsen,et al.  Multiplexed sandwich assays in microarray format. , 2004, Journal of immunological methods.

[283]  Adam Heller,et al.  Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels. , 2003, Journal of the American Chemical Society.

[284]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[285]  S. Evans,et al.  Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[286]  Noam Eliaz,et al.  Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. , 2007, Journal of biomedical materials research. Part A.

[287]  J. C. Rifea,et al.  Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors , 2003 .

[288]  Anna L Whitworth,et al.  Scanning electrochemical microscopy: principles and applications to biophysical systems , 2006, Physiological measurement.

[289]  Jing-Juan Xu,et al.  Glucose biosensor based on ENFET doped with SiO2 nanoparticles , 2004 .

[290]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[291]  L. Abrantes,et al.  Adsorption of human serum albumin onto gold: a combined electrochemical and ellipsometric study. , 2004, Journal of colloid and interface science.

[292]  Toru Ide,et al.  A novel method for artificial lipid-bilayer formation. , 2005, Biosensors & bioelectronics.

[293]  P. Unwin,et al.  In situ observation of the surface processes involved in dissolution from the cleavage surface of calcite in aqueous solution using combined scanning electrochemical-atomic force microscopy (SECM-AFM). , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.