Cryogenic sensor enabling broad-band and traceable power measurements.

Recently, great progress has been made in the field of ultrasensitive microwave detectors, reaching even the threshold for utilization in circuit quantum electrodynamics. However, cryogenic sensors lack the compatibility with broad-band metrologically traceable power absorption measurements at ultralow powers, which restricts their range of applications. Here, we demonstrate such measurements using an ultralow-noise nanobolometer, which we extend by an additional direct-current (dc) heater input. The tracing of the absorbed power relies on comparing the response of the bolometer between radio frequency and dc-heating powers traced to the Josephson voltage and quantum Hall resistance. To illustrate this technique, we demonstrate two different methods of dc-substitution to calibrate the power that is delivered to the base temperature stage of a dilution refrigerator using our in situ power sensor. As an example, we demonstrate the ability to accurately measure the attenuation of a coaxial input line between the frequencies of 50 MHz and 7 GHz with an uncertainty down to 0.1 dB at a typical input power of -114 dBm.

[1]  O. Astafiev,et al.  Materials for a broadband microwave superconducting single photon detector , 2022, Superconductor Science and Technology.

[2]  M. Cattaneo,et al.  Dynamics of a dispersively coupled transmon qubit in the presence of a noise source embedded in the control line , 2022, Physical Review A.

[3]  P. Krantz,et al.  Microwave calibration of qubit drive line components at millikelvin temperatures , 2021, Applied Physics Letters.

[4]  P. Bertet,et al.  Detecting spins by their fluorescence with a microwave photon counter , 2021, Nature.

[5]  F. Giazotto,et al.  Fully Superconducting Josephson Bolometers for Gigahertz Astronomy , 2020, Applied Sciences.

[6]  J. Bardin,et al.  Microwaves in Quantum Computing , 2020, IEEE Journal of Microwaves.

[7]  J. Tsai,et al.  Gate-based superconducting quantum computing , 2020, Journal of Applied Physics.

[8]  P. Hakonen,et al.  Bolometer operating at the threshold for circuit quantum electrodynamics , 2020, Nature.

[9]  S. Girvin,et al.  Circuit quantum electrodynamics , 2020, Reviews of Modern Physics.

[10]  A. Derbin,et al.  New limits on the resonant absorption of solar axions obtained with a $$^\mathbf {169}$$Tm-containing cryogenic detector , 2020, 2004.08121.

[11]  P. Rouchon,et al.  Number-Resolved Photocounter for Propagating Microwave Mode , 2020, 2004.05114.

[12]  A. Wallraff,et al.  Primary Thermometry of Propagating Microwaves in the Quantum Regime , 2020, Physical Review X.

[13]  Alexandre Blais,et al.  Quantum information processing and quantum optics with circuit quantum electrodynamics , 2020, Nature Physics.

[14]  D. Englund,et al.  Graphene-based Josephson junction microwave bolometer , 2019, Nature.

[15]  M. Weides,et al.  Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit , 2019, npj Quantum Information.

[16]  O. Astafiev,et al.  Two-Level System as a Quantum Sensor for Absolute Calibration of Power , 2019, Physical Review Applied.

[17]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[18]  M. Möttönen,et al.  Calibration of cryogenic amplification chains using normal-metal–insulator–superconductor junctions , 2019, Applied Physics Letters.

[19]  Abdulaziz H. Haddab,et al.  Using radiation pressure to develop a radio-frequency power measurement technique traceable to the redefined SI , 2018, Applied Physics Letters.

[20]  A. Marx,et al.  Ultrawide-range photon number calibration using a hybrid system combining nano-electromechanics and superconducting circuit quantum electrodynamics , 2018, Applied Physics Letters.

[21]  M. Prunnila,et al.  Nanobolometer with ultralow noise equivalent power , 2018, Communications Physics.

[22]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[23]  J. Bylander,et al.  Noise and loss of superconducting aluminium resonators at single photon energies , 2018, 1801.10204.

[24]  M. Weides,et al.  Local sensing with the multilevel ac Stark effect , 2018, Physical Review A.

[25]  Fei Yan,et al.  Distinguishing Coherent and Thermal Photon Noise in a Circuit Quantum Electrodynamical System. , 2018, Physical review letters.

[26]  Duc Dang Dinh,et al.  Millimetre-wave power sensor design , 2017 .

[27]  A. Wallraff,et al.  Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons , 2017, 1711.11569.

[28]  K. Koshino,et al.  Quantum non-demolition detection of an itinerant microwave photon , 2017, 1711.05479.

[29]  P. Mauskopf,et al.  Advances in Bolometer Technology for Fundamental Physics , 2017 .

[30]  Arkady Fedorov,et al.  In Situ Characterization of Qubit Control Lines: A Qubit as a Vector Network Analyzer. , 2017, Physical review letters.

[31]  Christopher L. Holloway,et al.  Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging , 2017, IEEE Transactions on Electromagnetic Compatibility.

[32]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[33]  J. S. Cushman,et al.  The detector calibration system for the CUORE cryogenic bolometer array , 2016, 1608.01607.

[34]  M. Möttönen,et al.  Microwave Admittance of Gold‐Palladium Nanowires with Proximity‐Induced Superconductivity , 2016, 1607.08900.

[35]  G. Finkelstein,et al.  Critical Current Scaling in Long Diffusive Graphene-Based Josephson Junctions. , 2016, Nano letters.

[36]  M. Möttönen,et al.  Detection of Zeptojoule Microwave Pulses Using Electrothermal Feedback in Proximity-Induced Josephson Junctions. , 2015, Physical review letters.

[37]  E. Strambini,et al.  Proximity nanovalve with large phase-tunable thermal conductance , 2014, 1407.4915.

[38]  M. Mottonen,et al.  Microwave nanobolometer based on proximity Josephson junctions , 2014, 1403.6586.

[39]  B. Huard,et al.  Superconducting quantum node for entanglement and storage of microwave radiation. , 2014, Physical review letters.

[40]  John M. Martinis,et al.  Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency , 2013, 1311.1180.

[41]  J. Caumes,et al.  Absolute self-calibrated room-temperature terahertz powermeter. , 2013, Applied optics.

[42]  Z. Popović,et al.  Two-port microwave calibration at millikelvin temperatures. , 2013, The Review of scientific instruments.

[43]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[44]  G Brida,et al.  Self consistent, absolute calibration technique for photon number resolving detectors. , 2011, Optics express.

[45]  J. Cuevas,et al.  Linear ac response of diffusive SNS junctions , 2010, 1012.4294.

[46]  J. Koski,et al.  Thermal conductance by the inverse proximity effect in a superconductor. , 2010, Physical review letters.

[47]  Adrian T. Lee,et al.  Invited article: millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument. , 2010, The Review of scientific instruments.

[48]  C. Arnaboldi,et al.  Characterization of ZnSe scintillating bolometers for Double Beta Decay , 2010, 1006.2721.

[49]  E. Thuneberg,et al.  Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. , 2010, Physical review letters.

[50]  J. Martinis,et al.  Microwave response of vortices in superconducting thin films of Re and Al , 2008, 0812.3645.

[51]  Jet Efda Contributors,et al.  Upgraded bolometer system on JET for improved radiation measurements , 2007 .

[52]  J. Cuevas,et al.  Density of states and supercurrent in diffusive SNS junctions: Roles of nonideal interfaces and spin-flip scattering , 2007, 0704.2358.

[53]  S. Girvin,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006, cond-mat/0602322.

[54]  Arttu Luukanen,et al.  Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications , 2005, cond-mat/0508093.

[55]  A. Cleland,et al.  Nanoscale radio-frequency thermometry , 2003 .

[56]  F. Wilhelm,et al.  Josephson critical current in a long mesoscopic S-N-S junction , 2000, cond-mat/0008146.

[57]  M. Devoret,et al.  Energy distribution function of quasiparticles in mesoscopic wires , 1997 .

[58]  M. Devoret,et al.  Superconducting Proximity Effect Probed on a Mesoscopic Length Scale. , 1996 .

[59]  Alexander B. Zorin,et al.  The thermocoax cable as the microwave frequency filter for single electron circuits , 1995 .

[60]  G. Tucker,et al.  Cryogenic bolometric radiometer and telescope , 1994 .

[61]  E. Tegeler,et al.  Electrically calibrated cryogenic bolometers as primary detectors in the soft X-ray region , 1992 .

[62]  R.F. Clark,et al.  The microcalorimeter as a national microwave power standard , 1986, Proceedings of the IEEE.