The ASIM Mission on the International Space Station

The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite on the International Space Station (ISS) for measurements of lightning, Transient Luminous Events (TLEs) and Terrestrial Gamma-ray Flashes (TGFs). Developed in the framework of the European Space Agency (ESA), it was launched April 2, 2018 on the SpaceX CRS-14 flight to the ISS. ASIM was mounted on an external platform of ESA’s Columbus module eleven days later and is planned to take measurements during minimum 3 years. The instruments are an x- and gamma-ray monitor measuring photons from 15 keV to 20 MeV, and an array of three photometers and two cameras measuring in bands at: 180–250 nm, 337 nm and 777.4 nm. Additional objectives that can be addressed with the instruments relate to space physics like aurorae and meteors, and to Earth observation such as dust- and aerosol effects on cloud electrification. The paper describes the scientific objectives of the ASIM mission, the instruments, the mission architecture and the international collaboration supported by the ASIM Science Data Centre. ASIM is the first space mission with a comprehensive suite of instruments designed to measure TLEs and TGFs. Two companion papers describe the instruments in more detail (Østgaard et al. in Space Sci. Rev., 2019; Chanrion et al. in Space Sci. Rev., 2019).

[1]  T. H. Allin,et al.  Sprites over Europe , 2001 .

[2]  J. Dwyer The relativistic feedback discharge model of terrestrial gamma ray flashes , 2012 .

[3]  Richard J. Blakeslee,et al.  The detection of lightning from geostationary orbit , 1989 .

[4]  Walter A. Lyons,et al.  THE METEOROLOGY OF TRANSIENT LUMINOUS EVENTS-AN INTRODUCTION AND OVERVIEW , 2006 .

[5]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[6]  H. Edens,et al.  Upward electrical discharges from thunderstorms , 2007 .

[7]  T. Neubert,et al.  Analyses of electron runaway in front of the negative streamer channel , 2017 .

[8]  V. Pasko,et al.  Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events , 2011 .

[9]  Linga Reddy Cenkeramaddi,et al.  The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station , 2019, Space Science Reviews.

[10]  Lou‐Chuang Lee,et al.  Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets , 2009 .

[11]  E. Arnone,et al.  CHIMTEA—Chemical Impact of Thunderstorms on Earth’s Atmosphere , 2016 .

[12]  Matthew J. Heavner,et al.  Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets , 1995 .

[13]  D. Hampton,et al.  Preliminary results from the Sprites94 aircraft campaign: 1 , 1995 .

[14]  Søren Forchhammer,et al.  The Modular Multispectral Imaging Array (MMIA) of the ASIM Payload on the International Space Station , 2019 .

[15]  J. Zawodny,et al.  Stratospheric effects of energetic particle precipitation in 2003–2004 , 2005 .

[16]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm , 2007 .

[17]  E. Williams Atmospheric science: Predictable lightning paths? , 2008 .

[18]  S. Solomon,et al.  Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming , 2010, Science.

[19]  Richard J. Blakeslee,et al.  The role of the space shuttle videotapes in the discovery of sprites, jets and elves , 1998 .

[20]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[21]  M. Trifoglio,et al.  Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV , 2014 .

[22]  Umran S. Inan,et al.  Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere , 1997 .

[23]  U. Inan,et al.  Electrical discharge from a thundercloud top to the lower ionosphere , 2002, Nature.

[24]  P. N. Bhat,et al.  Terrestrial gamma‐ray flashes in the Fermi era: Improved observations and analysis methods , 2013 .

[25]  R. Nemzek,et al.  Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System , 1990, Science.

[26]  Steven A. Cummer,et al.  Simultaneous observations of optical lightning and terrestrial gamma ray flash from space , 2013 .

[27]  U. Inan,et al.  Terrestrial gamma ray flash production by active lightning leader channels , 2010 .

[28]  Kazuya Yoshida,et al.  Overview and early results of the Global Lightning and Sprite Measurements mission , 2015 .

[29]  Sergio Gil-Lopez,et al.  Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters , 2005 .

[30]  Richard J. Blakeslee,et al.  Gridded lightning climatology from TRMM-LIS and OTD: Dataset description , 2014 .

[31]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[32]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[33]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[34]  Bernard Vonnegut,et al.  Recent observations of lightning discharges from the top of a thundercloud into the clear air above , 1989 .

[35]  Victor P. Pasko,et al.  Recent advances in theory of transient luminous events , 2010 .

[36]  Rachel J. Steiner,et al.  Recent Results from Studies of Electric Discharges in the Mesosphere , 2008 .

[37]  J. Montanyà,et al.  Multi-instrumental analysis of large sprite events and their producing storm in southern France , 2014 .

[38]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability , 2002 .

[39]  Thomas Farges,et al.  Nadir observations of sprites from the International Space Station , 2004 .

[40]  Martin Bødker Enghoff,et al.  The response of clouds and aerosols to cosmic ray decreases , 2016 .

[41]  Steven A. Cummer,et al.  High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena , 2012, Space Science Reviews.

[42]  S. Lorenzini,et al.  Optical design of the lightning imager for MTG , 2017, International Conference on Space Optics.

[43]  Gerald J. Fishman,et al.  Electron‐positron beams from terrestrial lightning observed with Fermi GBM , 2011 .

[44]  Yukihiro Takahashi,et al.  Global distributions and occurrence rates of transient luminous events , 2008 .

[45]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[46]  O. Chanrion,et al.  Production of runaway electrons by negative streamer discharges , 2010 .

[47]  T. E. Nelson,et al.  Upward Electrical Discharges From Thunderstorm Tops , 2003 .

[48]  U. Inan,et al.  Elves triggered by positive and negative lightning discharges , 1999 .

[49]  TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs , 2008 .

[50]  T. Neubert On Sprites and Their Exotic Kin , 2003, Science.

[51]  J. Baronick,et al.  TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams , 2017 .

[52]  Yukihiro Takahashi,et al.  Elves : Lightning-induced transient luminous events in the lower ionosphere , 1996 .

[53]  Yoav Yair,et al.  Lightning Related Transient Luminous Events at High Altitude in the Earth’s Atmosphere: Phenomenology, Mechanisms and Effects , 2012 .

[54]  Gerald J. Fishman,et al.  The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes , 2014 .

[55]  H. Heetderks,et al.  The Imager for Sprites and Upper Atmospheric Lightning (ISUAL) , 2016 .

[56]  E. Williams Origin and context of C. T. R. Wilson's ideas on electron runaway in thunderclouds , 2010 .

[57]  T. Neubert,et al.  Profuse activity of blue electrical discharges at the tops of thunderstorms , 2017 .

[58]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.