DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization points, in order to reduce the cost of computation.

[1]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[2]  J. R. Philip Diffusion by Continuous Movements , 1968 .

[3]  B. Vanleer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[4]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[5]  James Glimm,et al.  A generalized Riemann problem for quasi-one-dimensional gas flows , 1984 .

[6]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[7]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[8]  Shi Jin,et al.  The discrete-ordinate method in diffusive regimes , 1991 .

[9]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .

[10]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[11]  Edward W. Larsen,et al.  The Asymptotic Diffusion Limit of Discretized Transport Problems , 1992 .

[12]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[13]  Kun Xu,et al.  Numerical hydrodynamics from gas-kinetic theory , 1993 .

[14]  F. Hermeline,et al.  Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoı Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations , 1993 .

[15]  Finite differences versus finite elements in slab geometry, even-parity transport theory , 1993 .

[16]  Kun Xu,et al.  Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .

[17]  Totally invariant set functions of polynomial type , 1994 .

[18]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[19]  Shi Jin,et al.  Numerical Integrations of Systems of Conservation Laws of Mixed Type , 1995, SIAM J. Appl. Math..

[20]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[21]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[22]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[23]  Jim E. Morel,et al.  A Linear-Discontinuous Spatial Differencing Scheme forSnRadiative Transfer Calculations , 1996 .

[24]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[25]  Pierre Degond,et al.  THE ASYMPTOTICS OF COLLISION OPERATORS FOR TWO SPECIES OF PARTICLES OF DISPARATE MASSES , 1996 .

[26]  Marvin L. Adams,et al.  Subcell balance methods for radiative transfer on arbitrary grids , 1997 .

[27]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[28]  Benoît Perthame,et al.  An Introduction to Kinetic Schemes for Gas Dynamics , 1997, Theory and Numerics for Conservation Laws.

[29]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[30]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[31]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[32]  Laurent Gosse,et al.  A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws† , 1998 .

[33]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[34]  Lorenzo Pareschi,et al.  Numerical schemes for kinetic equations in diffusive regimes , 1998 .

[35]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[36]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[37]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[38]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[39]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[40]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[41]  DIFFUSION OF ELECTRONS BY MULTICHARGED IONS , 2000 .

[42]  Lorenzo Pareschi,et al.  Discretization of the Multiscale Semiconductor Boltzmann Equation by Diffusive Relaxation Schemes , 2000 .

[43]  Lorenzo Pareschi,et al.  Central Differencing Based Numerical Schemes for Hyperbolic Conservation Laws with Relaxation Terms , 2001, SIAM J. Numer. Anal..

[44]  Laurent Gosse,et al.  A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservati , 2001 .

[45]  S. Cordier,et al.  The grazing collision limit for the Boltzmann-Lorentz model , 2001 .

[46]  S. Mancini,et al.  A Finite Element Approximation of Grazing Collisions , 2003 .

[47]  Ramaz Botchorishvili,et al.  Equilibrium schemes for scalar conservation laws with stiff sources , 2003, Math. Comput..