Geometric resonances in Bose–Einstein condensates with two- and three-body interactions

We investigate geometric resonances in Bose?Einstein condensates by solving the underlying time-dependent Gross?Pitaevskii equation for systems with two- and three-body interactions in an axially symmetric harmonic trap. To this end, we use a recently developed analytical method (Vidanovi? et al 2011 Phys. Rev. A 84 013618), based on both a perturbative expansion and a Poincar??Lindstedt analysis of a Gaussian variational approach, as well as a detailed numerical study of a set of ordinary differential equations for variational parameters. By changing the anisotropy of the confining potential, we numerically observe and analytically describe strong nonlinear effects: shifts in the frequencies and mode coupling of collective modes, as well as resonances. Furthermore, we discuss in detail the stability of a Bose?Einstein condensate in the presence of an attractive two-body interaction and a repulsive three-body interaction. In particular, we show that a small repulsive three-body interaction is able to significantly extend the stability region of the condensate.

[1]  V. Bychkov,et al.  Parametric resonance of capillary waves at the interface between two immiscible Bose-Einstein condensates , 2012, 1206.4834.

[2]  N. Akhmediev,et al.  Bose-Einstein Condensation of Atoms with Attractive Interaction , 1999 .

[3]  Effects of three-body scattering processes on BCS-BEC crossover , 2010, 1110.3417.

[4]  C. N. Kumar,et al.  Complex solitons in Bose–Einstein condensates with two- and three-body interactions , 2010 .

[5]  Castin,et al.  Bose-Einstein Condensates in Time Dependent Traps. , 1996, Physical review letters.

[6]  Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps , 2001, cond-mat/0104231.

[7]  P. G. Kevrekidis,et al.  Faraday waves in Bose-Einstein condensates , 2007, 0710.5921.

[8]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[9]  M. S. Singh,et al.  Collective Excitations of a Confined Bose Condensate. , 1996, Physical review letters.

[10]  Shizhong Zhang,et al.  Three-dimensional Bose gas near a Feshbach resonance , 2012 .

[11]  Andr'e M. C. Souza,et al.  First Mott lobe of bosons with local two- and three-body interactions , 2011 .

[12]  Liang Jin,et al.  Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields , 2012, Quantum Inf. Process..

[13]  C. Wieman,et al.  Controlled collapse of a Bose-Einstein condensate. , 2001, Physical review letters.

[14]  V. Bagnato,et al.  Coupling collective modes in a trapped superfluid , 2012 .

[15]  Masahito Ueda,et al.  Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates , 2003, cond-mat/0309539.

[16]  P. Engels,et al.  Observation of faraday waves in a Bose-Einstein condensate. , 2007, Physical review letters.

[17]  A. Saxena,et al.  Effect of incorporating three-body interaction in the low-density energy expansion of Bose–Einstein condensate of 87Rb atoms trapped in a harmonic potential , 2006 .

[18]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[19]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[20]  Víctor M. Pérez-García,et al.  Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations , 1997 .

[21]  Kecheng Zhang,et al.  Dynamic behaviour of Bose–Einstein condensates in optical lattices with two- and three-body interactions , 2009, 0904.3376.

[22]  Peng Ping,et al.  Effects of three-body interaction on collective excitation and stability of Bose–Einstein condensate , 2009 .

[23]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Calculation of mode coupling for quadrupole excitations in a Bose-Einstein condenstate , 2001, cond-mat/0105394.

[25]  V. Efimov WEAKLY-BOUND STATES OF 3 RESONANTLY-INTERACTING PARTICLES , 1971 .

[26]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[27]  Xue Ju-kui,et al.  Stability and Collective Excitation of Two-Dimensional BECs with Two- and Three-Body Interactions in an Anharmonic Trap , 2009 .

[28]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[29]  Mott-Hubbard transition of bosons in optical lattices with three-body interactions , 2007, 0712.1696.

[30]  Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions , 2000, Nature.

[31]  Xue Ju-kui,et al.  Bose–Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature , 2010 .

[32]  Antun Balaz,et al.  Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Fast Converging Path Integrals for Time-Dependent Potentials II: Generalization to Many-body Systems and Real-Time Formalism , 2010, 1011.5185.

[34]  Michael Schanz,et al.  High-order variational calculation for the frequency of time-periodic solutions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Ronald E. Mickens,et al.  An introduction to nonlinear oscillations , 1981 .

[36]  Cirac,et al.  Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. , 1996, Physical review letters.

[37]  Elena D'iaz,et al.  Stability and decay of Bloch oscillations in the presence of time-dependent nonlinearity , 2011 .

[38]  P. Facchi,et al.  Domain wall suppression in trapped mixtures of Bose-Einstein condensates , 2012, 1206.3339.

[39]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases: Fermions , 2008 .

[40]  Andrews,et al.  Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap. , 1996, Physical review letters.

[41]  C. Hamner,et al.  Dynamics of dark–bright solitons in cigar-shaped Bose–Einstein condensates , 2010, 1005.3789.

[42]  Cornell,et al.  Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas. , 1996, Physical review letters.

[43]  L. Pitaevskiĭ Phenomenological theory of mode collapse-revival in a confined Bose gas , 1997, cond-mat/9701004.

[44]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[45]  T. Kofané,et al.  A variational approach to the modulational instability of a Bose–Einstein condensate in a parabolic trap , 2008 .

[46]  A. Nicolin,et al.  Resonant wave formation in Bose-Einstein condensates. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Aurel Bulgac Dilute quantum droplets. , 2002, Physical review letters.

[48]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[49]  A. I. Karanikas,et al.  Geometric-phase-propagator approach to time-dependent quantum systems , 2012 .

[50]  T. Mishra,et al.  "Three-body on-site interactions in ultracold bosonic atoms in optical lattices and superlattices" , 2012, 1203.1412.

[51]  K. Porsezian,et al.  Stability of trapless Bose–Einstein condensates with two- and three-body interactions , 2010, 1404.7246.

[52]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[53]  D. Stamper-Kurn,et al.  Collisionless and Hydrodynamic Excitations of a Bose-Einstein Condensate , 1998 .

[54]  Natalia G. Berloff Vortex Splitting in Subcritical Nonlinear Schrodinger Equation , 2008 .

[55]  A. Pelster,et al.  Ultra-fast converging path-integral approach for rotating ideal Bose–Einstein condensates , 2010, 1001.1463.

[56]  C. Hamner,et al.  Generation of dark-bright soliton trains in superfluid-superfluid counterflow. , 2010, Physical review letters.

[57]  C. M. Savage,et al.  Collapse and three-body loss in a 85 Rb Bose-Einstein condensate , 2011 .

[58]  F. Domínguez-Adame,et al.  Stable BLOCH oscillations of cold atoms with time-dependent interaction. , 2009, Physical review letters.

[59]  Paulsamy Muruganandam,et al.  C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2012, Comput. Phys. Commun..

[60]  Antun Balaz,et al.  Faraday waves in binary nonmiscible Bose-Einstein condensates , 2012, 1202.2059.

[61]  Sergio Rica,et al.  Coalescence and Droplets in the Subcritical Nonlinear Schrödinger Equation , 1997 .

[62]  Yang Lu,et al.  CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Low-Energy Collective Excitation of Bose-Einstein Condensates in an Anisotropic Magnetic Trap , 2009 .

[63]  Stringari Collective Excitations of a Trapped Bose-Condensed Gas. , 1996, Physical review letters.

[64]  C. Clark,et al.  Zero-Temperature, Mean-Field Theory of Atomic Bose-Einstein Condensates , 1996, Journal of research of the National Institute of Standards and Technology.

[65]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[66]  Clark,et al.  Collective Excitations of Atomic Bose-Einstein Condensates. , 1996, Physical review letters.

[67]  Alexandru I. Nicolin,et al.  Variational treatment of Faraday waves in inhomogeneous Bose–Einstein condensates , 2012 .

[68]  M. Lewenstein,et al.  LOW-ENERGY EXCITATIONS OF TRAPPED BOSE CONDENSATES , 1997 .

[69]  Y. P. Chen,et al.  Extreme tunability of interactions in a 7Li Bose-Einstein condensate. , 2008, Physical review letters.

[70]  Hopkins,et al.  Observation of harmonic generation and nonlinear coupling in the collective dynamics of a bose-einstein condensate , 2000, Physical review letters.

[71]  A. Pelster,et al.  Beyond mean-field low-lying excitations of dipolar Bose gases , 2011, 1111.0900.

[72]  S. Rolston,et al.  Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas. , 2004, Physical review letters.

[73]  T. Frederico,et al.  Stability of trapped Bose-Einstein condensates , 2001 .

[74]  Cornish,et al.  Stable 85Rb bose-einstein condensates with widely tunable interactions , 2000, Physical review letters.

[75]  T. Sowiński Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions , 2012, 1202.1932.

[76]  Zhidong Zhang,et al.  Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice with three-body interaction , 2010 .

[77]  Ewan M. Wright,et al.  Fundamental limit for integrated atom optics with Bose-Einstein condensates , 2003 .

[78]  BARRIER RESONANCES IN BOSE-EINSTEIN CONDENSATION , 1998, cond-mat/9811274.

[79]  Antun Balaz,et al.  Nonlinear Bose-Einstein-condensate dynamics induced by a harmonic modulation of the s-wave scattering length , 2011, 1106.4686.

[80]  Nonlinear dynamics of a Bose condensed gas , 1996, cond-mat/9612175.

[81]  Atomic Bose-Einstein condensation with three-body interactions and collective excitations , 1999, cond-mat/9911089.

[82]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[83]  D Kielpinski,et al.  Propagation of Bose-Einstein condensates in a magnetic waveguide. , 2002, Physical review letters.

[84]  V. S. Bagnato,et al.  Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length , 2010, 1004.2887.

[85]  Víctor M. Pérez-García,et al.  Extended Parametric Resonances in Nonlinear Schrödinger Systems , 1999, patt-sol/9903004.

[86]  Hui Dai,et al.  Nonlinear quantum interferometry with Bose condensed atoms , 2011, 1110.4734.

[87]  Antun Balaz,et al.  Fast converging path integrals for time-dependent potentials: I. Recursive calculation of short-time expansion of the propagator , 2009, 0912.2743.

[88]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[89]  Fatkhulla Kh. Abdullaev,et al.  Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices , 2005 .

[90]  Three-body problem in a dilute bose-Einstein condensate. , 2002, Physical review letters.

[91]  Pomeau,et al.  Cavitation versus vortex nucleation in a superfluid model. , 1995, Physical review letters.

[92]  D. Vudragovic,et al.  SPEEDUP Code for Calculation of Transition Amplitudes via the Effective Action Approach , 2011, 1105.0542.