Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress

[1]  G. Wörheide,et al.  Transcriptomic Resilience of the Montipora digitata Holobiont to Low pH , 2017, Front. Mar. Sci..

[2]  David J. Miller,et al.  Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals , 2017, BMC Genomics.

[3]  C. Li,et al.  Abundant betaines in giant clams (Tridacnidae) and western Pacific reef corals, including study of coral betaine acclimatization , 2017 .

[4]  J. Wiedenmann,et al.  The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions , 2017, Science Advances.

[5]  M. Scheffer,et al.  Coral reefs in the Anthropocene , 2017, Nature.

[6]  Erik Cordes,et al.  Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico , 2017, Front. Mar. Sci..

[7]  S. Palumbi,et al.  Early Transcriptional Responses during Heat Stress in the Coral Acropora hyacinthus , 2017, The Biological Bulletin.

[8]  S. Palumbi,et al.  Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis , 2017, Science Advances.

[9]  M. Tippett,et al.  Human influence on tropical cyclone intensity , 2016, Science.

[10]  C. A. Hurtado Transcriptomic analyses of the responses of corals to environmental stress , 2016 .

[11]  O. Levy,et al.  Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea , 2016, PeerJ.

[12]  C. Voolstra,et al.  Long‐term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome , 2016, Molecular ecology.

[13]  D. Hayward,et al.  Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora , 2016, BMC Genomics.

[14]  J. Pandolfi,et al.  The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. , 2015, Marine pollution bulletin.

[15]  D. Allemand,et al.  Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification , 2015, Scientific Reports.

[16]  J. Sun,et al.  Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. , 2015, Journal of proteome research.

[17]  D. Hayward,et al.  Rapid acclimation of juvenile corals to CO2‐mediated acidification by upregulation of heat shock protein and Bcl‐2 genes , 2015, Molecular ecology.

[18]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[19]  S. Cook,et al.  The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. , 2014, Biochimica et biophysica acta.

[20]  S. Goffredo,et al.  Gene expression profiles during short‐term heat stress in the red sea coral Stylophora pistillata , 2014, Global change biology.

[21]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[22]  P. Galli,et al.  The susceptibility of corals to thermal stress by analyzing Hsp60 expression. , 2014, Marine environmental research.

[23]  T. Harder,et al.  Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora , 2014, PloS one.

[24]  B. Willis,et al.  DMSP biosynthesis by an animal and its role in coral thermal stress response , 2013, Nature.

[25]  D. Bourne,et al.  Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges , 2013, PloS one.

[26]  Wei-Hua Wu,et al.  Potassium transport and signaling in higher plants. , 2013, Annual review of plant biology.

[27]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[28]  T. Oliver,et al.  Genomic basis for coral resilience to climate change , 2013, Proceedings of the National Academy of Sciences.

[29]  J. Valenzuela,et al.  Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change , 2012, Journal of Experimental Biology.

[30]  G. De’ath,et al.  The 27–year decline of coral cover on the Great Barrier Reef and its causes , 2012, Proceedings of the National Academy of Sciences.

[31]  R. Berkelmans,et al.  Salinity thresholds of Acropora spp. on the Great Barrier Reef , 2012, Coral Reefs.

[32]  D. Allemand,et al.  Cell Biology of Cnidarian-Dinoflagellate Symbiosis , 2012, Microbiology and Molecular Reviews.

[33]  D. Hayward,et al.  Whole Transcriptome Analysis of the Coral Acropora millepora Reveals Complex Responses to CO2‐driven Acidification during the Initiation of Calcification , 2012, Molecular ecology.

[34]  S. Wijffels,et al.  Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000 , 2012, Science.

[35]  K. Nagata,et al.  Protein folding and quality control in the ER. , 2011, Cold Spring Harbor perspectives in biology.

[36]  L. Ukani,et al.  Differential Responses of the Coral Host and Their Algal Symbiont to Thermal Stress , 2011, PloS one.

[37]  T. Harder,et al.  Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium , 2011, PloS one.

[38]  G. Somero,et al.  Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus) , 2011, Molecular ecology.

[39]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[40]  L. Tomanek,et al.  The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress , 2010, Journal of Experimental Biology.

[41]  G. Somero,et al.  Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success , 2010, Journal of Experimental Biology.

[42]  A. Tarrant,et al.  Ocean Warming Slows Coral Growth in the Central Red Sea , 2010, Science.

[43]  Devin Dersh,et al.  GRP94 in ER quality control and stress responses. , 2010, Seminars in cell & developmental biology.

[44]  C. Deser,et al.  Global warming pattern formation: sea surface temperature and rainfall. , 2010 .

[45]  G. Holland,et al.  Tropical cyclones and climate change , 2010, Tropical Cyclone Research and Review.

[46]  O. Hoegh‐Guldberg,et al.  Early molecular responses of coral larvae to hyperthermal stress , 2009, Molecular ecology.

[47]  R. Gates,et al.  Betaines and Dimethylsulfoniopropionate as Major Osmolytes in Cnidaria with Endosymbiotic Dinoflagellates , 2009, Physiological and Biochemical Zoology.

[48]  C. Downs,et al.  Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. , 2009, The Science of the total environment.

[49]  A. Chow,et al.  Increased light intensity induces heat shock protein Hsp60 in coral species , 2009, Cell Stress and Chaperones.

[50]  Audrey Kauffmann,et al.  Bioinformatics Applications Note Arrayqualitymetrics—a Bioconductor Package for Quality Assessment of Microarray Data , 2022 .

[51]  P. Glynn,et al.  Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook , 2008 .

[52]  M. Lesser Oxidative stress in marine environments: biochemistry and physiological ecology. , 2006, Annual review of physiology.

[53]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[54]  P. Falkowski,et al.  Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Bellwood,et al.  Confronting the coral reef crisis , 2004, Nature.

[56]  D. Allemand,et al.  Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. , 2004, Biochimica et biophysica acta.

[57]  A. Kerswell,et al.  Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching¹ , 2003 .

[58]  S. Pierce,et al.  The Taurine Efflux Portal Used to Regulate Cell Volume in Response to Hypoosmotic Stress Seems to Be Similar in Many Cell Types: Lessons to Be Learned from Molluscan Red Blood Cells1 , 2001 .

[59]  H. Bohnert,et al.  PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY. , 2000, Annual review of plant physiology and plant molecular biology.

[60]  C. Folke,et al.  Ecological goods and services of coral reef ecosystems , 1999 .

[61]  R. Woesik,et al.  Effects of Cyclone 'Joy' on nearshore coral communities of the Great Barrier Reef , 1995 .

[62]  D. M. Dickson,et al.  The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis , 1986, Planta.

[63]  G. Somero,et al.  Biochemical Adaptation: Mechanism and Process in Physiological Evolution , 1984 .

[64]  S. Pierce INVERTEBRATE CELL VOLUME CONTROL MECHANISMS: A COORDINATED USE OF INTRACELLULAR AMINO ACIDS AND INORGANIC IONS AS OSMOTIC SOLUTE , 1982 .

[65]  Michael Cowlin Osmoregulation and the Anthozoan-Dinoflagellate Symbiosis , 2012 .

[66]  Y. Jan,et al.  Cloned potassium channels from eukaryotes and prokaryotes. , 1997, Annual review of neuroscience.

[67]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[68]  A. Shinagawa,et al.  The role of free amino acids and betaines in intracellular osmoregulation of marine sponges , 1992 .

[69]  R. J. Hoffmann,et al.  Hypoosmotic volume regulation in the sea anemone Metridium senile , 1988 .