Optimal phase parameter estimation of random amplitude linear FM signals using cyclic moments

This paper considers the problem of estimating the phase parameters of a linear FM signal which is modulated by a random process and is embedded in additive noise. In particular, we consider the use of cyclic moments and derive variance expressions for the phase parameter estimates for all values of the lag parameter of the second order cyclic moment, /spl tau/. It is seen that the accuracy of the phase parameter estimates depends greatly on /spl tau/. This allows the definition of an optimal value of /spl tau/, in the sense that it minimises the phase parameter estimation variance.

[1]  Georgios B. Giannakis,et al.  Asymptotic theory of mixed time averages and k th-order cyclic-moment and cumulant statistics , 1995, IEEE Trans. Inf. Theory.

[2]  Boualem Boashash,et al.  Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra , 1994, IEEE Trans. Signal Process..

[3]  Georgios B. Giannakis,et al.  Estimating random amplitude polynomial phase signals: a cyclostationary approach , 1995, IEEE Trans. Signal Process..

[4]  A. W. Rihaczek Principles of high-resolution radar , 1969 .

[5]  Messaoud Benidir,et al.  Distinction between polynomial phase signals with constant amplitude and random amplitude , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Boualem Boashash,et al.  Polynomial time-frequency distributions and timevarying higher-order spectra: A review of performance for non-stationary signal analysis , 1996, Fourth International Symposium on Signal Processing and Its Applications.

[7]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[8]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[9]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[10]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[11]  Robert J. Urick,et al.  Principles of underwater sound for engineers , 1967 .

[12]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[13]  Sergio Barbarossa,et al.  Analysis of polynomial-phase signals by the integrated generalized ambiguity function , 1997, IEEE Trans. Signal Process..