A Particle Method for Fluid-Structure Interaction Simulations in Multiple GPUs

This chapter is a presentation of the programming philosophy behind a novel numerical particle method for the simulation of the interaction of compressible fluids and elastic structures, specifically designed to run in multiple Graphics Processing Units (GPUs). The code has been developed using the CUDA C Application Programming Interface (API) for fine-grain parallelism in the GPUs and the Message Passing Interface library (MPI) for the distribution of threads in the Central Processing Units (CPUs) and the communication of shared data between GPUs. The numerical algorithm does not use smoothing kernels nor weighting functions for the computation of differential operators. A novel approach is used to compute gradients using averages of radial finite differences and divergences using Gauss’ theorem by approximations based on area integrals around local spheres around each particle. The interactions of the particles inside the fluid are modelled using the isothermal, compressible Navier-Stokes equations and a simple equation of state. The elastic material is modelled using inter-particle springs with damping. Results show the potential of the method for the simulation of flows in complex geometries.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[3]  Joseph L. Steger,et al.  On application of body conforming curvilinear grids for finite difference solution of external flow , 1982 .

[4]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[5]  M. Schweitzer Generalizations of the Finite Element Method , 2012 .

[6]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[7]  Jacques M. Bahi,et al.  Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters , 2014, The Journal of Supercomputing.

[8]  A. Leonard Vortex methods for flow simulation , 1980 .

[9]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[10]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[11]  Petros Koumoutsakos Active control of vortex–wall interactions , 1997 .

[12]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[13]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[14]  Leonardo Di G. Sigalotti,et al.  On the kernel and particle consistency in smoothed particle hydrodynamics , 2016, 1605.05245.

[15]  William J. Dally,et al.  GPUs and the Future of Parallel Computing , 2011, IEEE Micro.

[16]  Francisco Mandujano,et al.  Moments Preserving and high-resolution Semi-Lagrangian Advection Scheme , 2014, SIAM J. Sci. Comput..

[17]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[18]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[19]  Suhas V. Patankar,et al.  CALCULATION PROCEDURE FOR VISCOUS INCOMPRESSIBLE FLOWS IN COMPLEX GEOMETRIES , 1988 .

[20]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[21]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[22]  Dmitri Kuzmin,et al.  Finite Element Methods for Computational Fluid Dynamics: A Practical Guide , 2014 .

[23]  Julián Becerra-Sagredo,et al.  A Template for Scalable Continuum Dynamic Simulations in Multiple GPUs , 2015, ICS 2015.

[24]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .