Numerical option pricing beyond Lévy

This work considers the numerical approximation of option prices in different market models beyond Lévy processes. The Lévy setup is extended in several directions. The arising partial integrodifferential equations and inequalities are solved with the finite element method. European as well as American type contracts are considered. Spatially inhomogeneous market models are analyzed, specifically certain Feller processes are considered. The well-posedness of the arising pricing equations is proved using pseudodifferential operator theory. The resulting pricing equations need no longer be parabolic and can exhibit degeneracies under certain conditions. Classical continuous Galerkin methods are therefore inapplicable for the numerical solution of the corresponding pricing equations. Thus we employ a discontinuous Galerkin discretization or alternatively a streamline diffusion approach. Convergence results are shown in both cases. Besides the spatial inhomogeneity, also the assumption of temporal homogeneity of the coefficients of the partial integrodifferential equations is weakened. The well-posedness for pricing equations with degenerate coefficients in time is shown via a weak space-time formulation. The main problem arising in the discretization of such equations is the non-applicability of classical time-marching schemes due to the possible degeneracy of the coefficients. Therefore two alternative approaches are considered. First, a continuous Galerkin method for the space-time discretization is used, in this case optimality of the solution algorithm can be shown. Second, a discontinuous Galerkin discretization for the temporal domain is studied, in which case exponential convergence of the algorithm can be shown. Numerical examples are given to confirm the theoretical results. Partial integrodifferential equations with spatially as well as temporally inhomogeneous coefficients are solved numerically. European and American options are priced.

[1]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[4]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..

[5]  Ernst Eberlein,et al.  On the duality principle in option pricing: semimartingale setting , 2008, Finance Stochastics.

[6]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[7]  Christoph Schwab,et al.  Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..

[8]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[9]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[10]  Christoph Schwab,et al.  Numerical Analysis of Additive, Lévy and Feller Processes with Applications to Option Pricing , 2010 .

[11]  Alexey Chernov,et al.  Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex , 2011, Math. Comput..

[12]  I. Babuska Error-bounds for finite element method , 1971 .

[13]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[14]  Christoph Winter,et al.  Wavelet Galerkin Schemes for Multidimensional Anisotropic Integrodifferential Operators , 2010, SIAM J. Sci. Comput..

[15]  P. Grisvard Espaces intermédiaires entre espaces de Sobolev avec poids , 1963 .

[16]  Marc Yor,et al.  From local volatility to local Lévy models , 2004 .

[17]  Koji Kikuchi,et al.  On Markov process generated by pseudodifferential operator of variable order , 1997 .

[18]  Rama Cont,et al.  Mimicking the marginal distributions of a semimartingale , 2009, 0910.3992.

[19]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[20]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[21]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.

[22]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[23]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[24]  Hoang-Ngan Nguyen,et al.  Finite element wavelets for solving partial differential equations , 2005 .

[25]  Christoph Schwab,et al.  On Kolmogorov equations for anisotropic multivariate Lévy processes , 2010, Finance Stochastics.

[26]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[27]  C. Schwab,et al.  hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES , 2012 .

[28]  Damien Lamberton,et al.  The critical price for the American put in an exponential Lévy model , 2008, Finance Stochastics.

[29]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[30]  Björn Böttcher,et al.  Construction of time‐inhomogeneous Markov processes via evolution equations using pseudo‐differential operators , 2008 .

[31]  R. Wolpert Lévy Processes , 2000 .

[32]  Dominik Schötzau,et al.  hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .

[33]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[34]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[35]  R. Elliott,et al.  Perpetual American options with fractional Brownian motion , 2004 .

[36]  W Schachermeyer The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes , 1997 .

[37]  Dominik Schötzau,et al.  hp-DGFEM for parabolic evolution problems , 1999 .

[38]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[39]  D. Hunter Pricing electricity derivatives on an hourly basis , 2010 .

[40]  Christoph Winter,et al.  Wavelet Galerkin schemes for option pricing in multidimensional Lévy models , 2009 .

[41]  Christoph Schwab Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.

[42]  Fred Espen Benth,et al.  On arbitrage‐free pricing of weather derivatives based on fractional Brownian motion , 2003 .

[43]  Wolfgang Kluge,et al.  Time-inhomogeneous Levy processes in interest rate and credit risk models , 2005 .

[44]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[45]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[46]  Christoph Schwab,et al.  Linear Complexity Solution of Parabolic Integro-differential Equations , 2006, Numerische Mathematik.

[47]  D. Hardin,et al.  Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .

[48]  Steven Roman The Formula of FAA Di Bruno , 1980 .

[49]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[50]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[51]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[52]  Tomas Björk,et al.  A note on Wick products and the fractional Black-Scholes model , 2005, Finance Stochastics.

[53]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[54]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .

[55]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[56]  K. Kunisch,et al.  Parabolic variational inequalities : The Lagrange multiplier approach , 2006 .

[57]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[58]  Vom Fachbereich Mathematik,et al.  Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[59]  Karsten Urban,et al.  Wavelet Methods for Elliptic Partial Differential Equations , 2008 .

[60]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[61]  Sergei Levendorskii,et al.  Feller processes of normal inverse Gaussian type , 2001 .

[62]  Subordination in the Sense of S. Bochner-An Approach through Pseudo Differential Operators , 1996 .

[63]  F. Benth,et al.  ROBUSTNESS OF OPTION PRICES AND THEIR DELTAS IN MARKETS MODELLED BY JUMP-DIFFUSIONS , 2011 .

[64]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[65]  Christoph Schwab,et al.  Exponential convergence of hp quadrature for integral operators with Gevrey kernels , 2011 .

[66]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[67]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[68]  Pierre Priouret,et al.  Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum , 1968 .

[69]  Bruno Dupire Pricing with a Smile , 1994 .

[70]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[71]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[72]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[73]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[74]  P. Protter Stochastic integration and differential equations , 1990 .

[75]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[76]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[77]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[78]  M. Kac On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .

[79]  R. Nelsen An Introduction to Copulas , 1998 .

[80]  Walter Hoh Pseudo differential operators with negative definite symbols of variable order , 2000 .

[81]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[82]  M. Kac On distributions of certain Wiener functionals , 1949 .

[83]  Serge Cohen,et al.  Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes , 2007 .

[84]  Rob Stevenson,et al.  Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..

[85]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[86]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[87]  Christoph Schwab,et al.  Anisotropic Stable Levy Copula Processes - Analytical and Numerical Aspects , 2007 .

[88]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[89]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[90]  Reinhold Schneider,et al.  Wavelet solution of variable order pseudodifferential equations , 2010 .

[91]  Tammo Jan Dijkema,et al.  Adaptive tensor product wavelet methods for solving PDEs , 2009 .

[92]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.

[93]  N. Hilber,et al.  Stabilized wavelet methods for option pricing in high dimensional stochastic volatility models , 2009 .

[94]  Robert J. Elliott,et al.  Fractional Brownian Motion and Financial Modelling , 2001 .

[95]  O. Reichmann,et al.  Optimal space–time adaptive wavelet methods for degenerate parabolic PDEs , 2011, Numerische Mathematik.

[96]  Marc Yor,et al.  SELF‐DECOMPOSABILITY AND OPTION PRICING , 2007 .

[97]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[98]  J. Craggs Applied Mathematical Sciences , 1973 .

[99]  R. Schilling,et al.  Transition Density Estimates for a Class of Lévy and Lévy-Type Processes , 2009, 0912.1482.

[100]  P. Tankov,et al.  Characterization of dependence of multidimensional Lévy processes using Lévy copulas , 2006 .

[101]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[102]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[103]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.