Numerical option pricing beyond Lévy
暂无分享,去创建一个
[1] Niels Jacob,et al. Pseudo-Differential Operators and Markov Processes , 1996 .
[2] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[3] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[4] Rob P. Stevenson,et al. Wavelets with patchwise cancellation properties , 2006, Math. Comput..
[5] Ernst Eberlein,et al. On the duality principle in option pricing: semimartingale setting , 2008, Finance Stochastics.
[6] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[7] Christoph Schwab,et al. Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..
[8] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[9] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[10] Christoph Schwab,et al. Numerical Analysis of Additive, Lévy and Feller Processes with Applications to Option Pricing , 2010 .
[11] Alexey Chernov,et al. Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex , 2011, Math. Comput..
[12] I. Babuska. Error-bounds for finite element method , 1971 .
[13] C. Cryer. The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .
[14] Christoph Winter,et al. Wavelet Galerkin Schemes for Multidimensional Anisotropic Integrodifferential Operators , 2010, SIAM J. Sci. Comput..
[15] P. Grisvard. Espaces intermédiaires entre espaces de Sobolev avec poids , 1963 .
[16] Marc Yor,et al. From local volatility to local Lévy models , 2004 .
[17] Koji Kikuchi,et al. On Markov process generated by pseudodifferential operator of variable order , 1997 .
[18] Rama Cont,et al. Mimicking the marginal distributions of a semimartingale , 2009, 0910.3992.
[19] E. Seneta,et al. The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .
[20] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[21] Rama Cont,et al. Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.
[22] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[23] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[24] Hoang-Ngan Nguyen,et al. Finite element wavelets for solving partial differential equations , 2005 .
[25] Christoph Schwab,et al. On Kolmogorov equations for anisotropic multivariate Lévy processes , 2010, Finance Stochastics.
[26] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[27] C. Schwab,et al. hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES , 2012 .
[28] Damien Lamberton,et al. The critical price for the American put in an exponential Lévy model , 2008, Finance Stochastics.
[29] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[30] Björn Böttcher,et al. Construction of time‐inhomogeneous Markov processes via evolution equations using pseudo‐differential operators , 2008 .
[31] R. Wolpert. Lévy Processes , 2000 .
[32] Dominik Schötzau,et al. hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .
[33] M. Reed,et al. Methods of Mathematical Physics , 1980 .
[34] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[35] R. Elliott,et al. Perpetual American options with fractional Brownian motion , 2004 .
[36] W Schachermeyer. The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes , 1997 .
[37] Dominik Schötzau,et al. hp-DGFEM for parabolic evolution problems , 1999 .
[38] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[39] D. Hunter. Pricing electricity derivatives on an hourly basis , 2010 .
[40] Christoph Winter,et al. Wavelet Galerkin schemes for option pricing in multidimensional Lévy models , 2009 .
[41] Christoph Schwab. Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.
[42] Fred Espen Benth,et al. On arbitrage‐free pricing of weather derivatives based on fractional Brownian motion , 2003 .
[43] Wolfgang Kluge,et al. Time-inhomogeneous Levy processes in interest rate and credit risk models , 2005 .
[44] George C. Donovan,et al. Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .
[45] W. Dahmen,et al. Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .
[46] Christoph Schwab,et al. Linear Complexity Solution of Parabolic Integro-differential Equations , 2006, Numerische Mathematik.
[47] D. Hardin,et al. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .
[48] Steven Roman. The Formula of FAA Di Bruno , 1980 .
[49] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[50] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[51] C. Schwab,et al. Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .
[52] Tomas Björk,et al. A note on Wick products and the fractional Black-Scholes model , 2005, Finance Stochastics.
[53] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[54] I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .
[55] 佐藤 健一. Lévy processes and infinitely divisible distributions , 2013 .
[56] K. Kunisch,et al. Parabolic variational inequalities : The Lagrange multiplier approach , 2006 .
[57] B. Øksendal,et al. FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .
[58] Vom Fachbereich Mathematik,et al. Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .
[59] Karsten Urban,et al. Wavelet Methods for Elliptic Partial Differential Equations , 2008 .
[60] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[61] Sergei Levendorskii,et al. Feller processes of normal inverse Gaussian type , 2001 .
[62] Subordination in the Sense of S. Bochner-An Approach through Pseudo Differential Operators , 1996 .
[63] F. Benth,et al. ROBUSTNESS OF OPTION PRICES AND THEIR DELTAS IN MARKETS MODELLED BY JUMP-DIFFUSIONS , 2011 .
[64] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[65] Christoph Schwab,et al. Exponential convergence of hp quadrature for integral operators with Gevrey kernels , 2011 .
[66] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[67] S. Levendorskii,et al. Non-Gaussian Merton-Black-Scholes theory , 2002 .
[68] Pierre Priouret,et al. Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum , 1968 .
[69] Bruno Dupire. Pricing with a Smile , 1994 .
[70] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[71] PAUL HOUSTON,et al. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..
[72] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .
[73] B. Øksendal,et al. Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .
[74] P. Protter. Stochastic integration and differential equations , 1990 .
[75] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[76] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[77] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[78] M. Kac. On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .
[79] R. Nelsen. An Introduction to Copulas , 1998 .
[80] Walter Hoh. Pseudo differential operators with negative definite symbols of variable order , 2000 .
[81] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[82] M. Kac. On distributions of certain Wiener functionals , 1949 .
[83] Serge Cohen,et al. Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes , 2007 .
[84] Rob Stevenson,et al. Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..
[85] C J Isham,et al. Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .
[86] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .
[87] Christoph Schwab,et al. Anisotropic Stable Levy Copula Processes - Analytical and Numerical Aspects , 2007 .
[88] B. Mandelbrot. The Variation of Certain Speculative Prices , 1963 .
[89] Kazufumi Ito,et al. Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .
[90] Reinhold Schneider,et al. Wavelet solution of variable order pseudodifferential equations , 2010 .
[91] Tammo Jan Dijkema,et al. Adaptive tensor product wavelet methods for solving PDEs , 2009 .
[92] Reinhold Schneider,et al. Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.
[93] N. Hilber,et al. Stabilized wavelet methods for option pricing in high dimensional stochastic volatility models , 2009 .
[94] Robert J. Elliott,et al. Fractional Brownian Motion and Financial Modelling , 2001 .
[95] O. Reichmann,et al. Optimal space–time adaptive wavelet methods for degenerate parabolic PDEs , 2011, Numerische Mathematik.
[96] Marc Yor,et al. SELF‐DECOMPOSABILITY AND OPTION PRICING , 2007 .
[97] Dominik Schötzau,et al. An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .
[98] J. Craggs. Applied Mathematical Sciences , 1973 .
[99] R. Schilling,et al. Transition Density Estimates for a Class of Lévy and Lévy-Type Processes , 2009, 0912.1482.
[100] P. Tankov,et al. Characterization of dependence of multidimensional Lévy processes using Lévy copulas , 2006 .
[101] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[102] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[103] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.