Semantic image classification with hierarchical feature subset selection

High-dimensional visual features for image content characterization enables effective image classification. However, training accurate image classifiers in high-dimensional feature space suffers from the problem of curse of dimensionality and thus requires a large number of labeled images. To achieve accurate classifier training in high-dimensional feature space, we propose a hierarchical feature subset selection algorithm for semantic image classification, where the feature subset selection procedure is seamlessly integrated with the underlying classifier training procedure in a single algorithm. First, our hierarchical feature subset selection framework partitions the high-dimensional feature space into multiple homogeneous feature subspaces and forms a two-level feature hierarchy. Second, weak image classifiers are trained for each homogeneous feature subspace at the lower level of the feature hierarchy, where the traditional feature subset selection techniques such as principal component analysis (PCA) can be used for dimension reduction. Finally, these weak classifiers are boosted to determine an optimal image classifier and the higher-level feature subset selection is realized by selecting the most effective weak classifiers and their corresponding homogeneous feature subsets. Our experiments on a specific domain of natural images have obtained very positive results.

[1]  L. Breiman OUT-OF-BAG ESTIMATION , 1996 .

[2]  Wei-Ying Ma,et al.  Learning and inferring a semantic space from user's relevance feedback for image retrieval , 2002, MULTIMEDIA '02.

[3]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  John R. Smith,et al.  Image Classification and Querying Using Composite Region Templates , 1999, Comput. Vis. Image Underst..

[5]  Antonio Torralba,et al.  Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[9]  Philippe Mulhem,et al.  Fuzzy Conceptual Graphs for Matching Images of Natural Scenes , 2001, IJCAI.

[10]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Peter Bock,et al.  Analysis of a Fusion Method for Combining Marginal Classifiers , 2000, Multiple Classifier Systems.

[13]  Edward Y. Chang,et al.  Confidence-based dynamic ensemble for image annotation and semantics discovery , 2003, MULTIMEDIA '03.

[14]  Jianping Fan,et al.  Multi-level annotation of natural scenes using dominant image components and semantic concepts , 2004, MULTIMEDIA '04.

[15]  Fabrice Souvannavong,et al.  Latent semantic indexing for semantic content detection of video shots , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[16]  Edward Y. Chang,et al.  Statistical learning for effective visual information retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[17]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[18]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[19]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[20]  J. R. Kender,et al.  From images to sentences via spatial relations , 1999, Proceedings Integration of Speech and Image Understanding.

[21]  Serge J. Belongie,et al.  Region-based image querying , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[22]  Rainer Lienhart,et al.  Automatic classification of images on the Web , 2001, IS&T/SPIE Electronic Imaging.

[23]  Rong Yan,et al.  Image Classification Using a Bigram Model , 2003 .

[24]  Shin'ichi Satoh,et al.  Subject region segmentation in disparity maps for image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Touradj Ebrahimi,et al.  Tracking video objects in cluttered background , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[28]  William I. Grosky,et al.  Narrowing the semantic gap - improved text-based web document retrieval using visual features , 2002, IEEE Trans. Multim..

[29]  Joshua R. Smith,et al.  Multi-stage classi cation of images from features and related text , 1997 .

[30]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[31]  Zhong Jin,et al.  Integrated probability function and its application to content-based image retrieval by relevance feedback , 2003, Pattern Recognit..

[32]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[33]  Aleksandra Mojsilovic,et al.  ISee: perceptual features for image library navigation , 2002, IS&T/SPIE Electronic Imaging.

[34]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.