Bayesian one-sample prediction of future observations under Pareto distribution

Suppose that the length of time in years for which a business operates until failure has a Pareto distribution. Let t 1 < t 2 < ··· < t r denote the survival lifetimes of the first r of a random sample of n businesses. Bayesian predictions are to be made on the ordered failure times of the remaining (n − r) businesses, using the conditional probability function. Numerical examples are given to illustrate our results.

[1]  Michael L. Feldstein,et al.  The generalized Pareto law as a model for progressively censored survival data , 1979 .

[2]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[3]  Dennis V. Lindley,et al.  Empirical Bayes Methods , 1974 .

[4]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[5]  A. M. Nigm,et al.  Bayesian prediction bounds for the pareto lifetime model , 1987 .

[6]  H. J. Malik Bayesian estimation of the Paretian index , 1970 .

[7]  Thaung Lwin Estimation of the tail of the paretian law , 1972 .

[8]  G.S. Lingappaiah Sequential Life-Testing with Spacings, Exponential Model , 1981, IEEE Transactions on Reliability.

[9]  Seymour Geisser,et al.  Predicting Pareto and exponential observables , 1984 .

[10]  T. Liang Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution , 1993 .

[11]  Bayesian prediction based on finite mixtures of lomax components model and type i censoring , 2001 .

[12]  B. Arnold,et al.  Bayesian inference for pareto populations , 1983 .

[13]  Danny D. Dyer,et al.  Structural probability bounds for the strong Pareto law , 1981 .

[14]  John Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[15]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[16]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[17]  Carl M. Harris,et al.  The Pareto Distribution as a Queue Service Discipline , 1968, Oper. Res..

[18]  E. C. Freiling A COMPARISON OF THE FALLOUT MASS-SIZE DISTRIBUTIONS CALCULATED BY LOGNORMAL AND POWER-LAW MODELS , 1966 .