Bayesian one-sample prediction of future observations under Pareto distribution
暂无分享,去创建一个
[1] Michael L. Feldstein,et al. The generalized Pareto law as a model for progressively censored survival data , 1979 .
[2] H. A. David,et al. Order Statistics (2nd ed). , 1981 .
[3] Dennis V. Lindley,et al. Empirical Bayes Methods , 1974 .
[4] A. Zellner. An Introduction to Bayesian Inference in Econometrics , 1971 .
[5] A. M. Nigm,et al. Bayesian prediction bounds for the pareto lifetime model , 1987 .
[6] H. J. Malik. Bayesian estimation of the Paretian index , 1970 .
[7] Thaung Lwin. Estimation of the tail of the paretian law , 1972 .
[8] G.S. Lingappaiah. Sequential Life-Testing with Spacings, Exponential Model , 1981, IEEE Transactions on Reliability.
[9] Seymour Geisser,et al. Predicting Pareto and exponential observables , 1984 .
[10] T. Liang. Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution , 1993 .
[11] Bayesian prediction based on finite mixtures of lomax components model and type i censoring , 2001 .
[12] B. Arnold,et al. Bayesian inference for pareto populations , 1983 .
[13] Danny D. Dyer,et al. Structural probability bounds for the strong Pareto law , 1981 .
[14] John Aitchison,et al. Statistical Prediction Analysis , 1975 .
[15] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[16] K. Lomax. Business Failures: Another Example of the Analysis of Failure Data , 1954 .
[17] Carl M. Harris,et al. The Pareto Distribution as a Queue Service Discipline , 1968, Oper. Res..
[18] E. C. Freiling. A COMPARISON OF THE FALLOUT MASS-SIZE DISTRIBUTIONS CALCULATED BY LOGNORMAL AND POWER-LAW MODELS , 1966 .