A general phase retrieval algorithm based on a ptychographical iterative engine for coherent diffractive imaging

Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He—Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.

[1]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[2]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[3]  O. Bunk,et al.  Ptychographic coherent diffractive imaging of weakly scattering specimens , 2010 .

[4]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[5]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[6]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  J. Miao,et al.  Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Chapman Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution , 1996 .

[9]  W. Hoppe,et al.  Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld , 1970 .

[10]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[11]  J. Fienup,et al.  Phase retrieval with transverse translation diversity: a nonlinear optimization approach. , 2008, Optics express.

[12]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[13]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[14]  Guo Jinchuan,et al.  A new method of detecting interferogram in differential phase-contrast imaging system based on special structured x-ray scintillator screen , 2010 .

[15]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[16]  O. Bunk,et al.  Influence of the overlap parameter on the convergence of the ptychographical iterative engine. , 2008, Ultramicroscopy.

[17]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[18]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[19]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[20]  A. G. Cullis,et al.  Transmission microscopy without lenses for objects of unlimited size. , 2007, Ultramicroscopy.

[21]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[23]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.