Complex plasma research on the International Space Station

Complex Plasma Research on the International Space Station Complex (dusty) plasma research under microgravity conditions complements the research in the laboratory. Due to reduction of the main force on microparticles in the lab, gravity, it is possible to form large, homogeneous 3D complex plasma systems in the bulk region of plasmas and to investigate phenomena other than those accessible on earth in detail. Therefore, our team designed and built different setups for microgravity research. PK-3 Plus, which ended in 2013, already gained a long series of interesting scientific results with about 40 publications. The chambers of this setup has a pair of parallel electrode plates and is therefore able to produce a cylindrical symmetric rf-plasma. Particles of different size and material can be injected into the discharge. The cloud is illuminated by a laser sheet and observed in 2D with cameras with different resolutions and fields of view. Moving this observation system in the direction of sight, tomographic reconstruction of the 3D particle configuration is possible later on. This configuration is ideal to investigate stable liquid and crystalline systems and give interesting insights into a wide range of phenomena like crystallization, phase separation of binary mixtures, instabilities like heart-beat instability or projectile interaction with a strongly coupled complex plasma cloud. This contribution will give an overview over a selection of recent results of the very successful project PK-3 Plus. This work and some of the authors were funded by DLR/BMWi FKZ 50WP0203, 50WM1203 and 50WM1441.

[1]  T. Hyde,et al.  Fluid modeling of void closure in microgravity noble gas complex plasmas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  S. Khrapak,et al.  A model of grain charging in collisional plasmas accounting for collisionless layer , 2007 .

[3]  A. Piel,et al.  Plasma Crystal Melting: A Nonequilibrium Phase Transition , 1998 .

[4]  Gregor E. Morfill,et al.  Nonlinear waves externally excited in a complex plasma under microgravity conditions , 2008 .

[5]  V. Fortov,et al.  Ion current on a small spherical attractive probe in a weakly ionized plasma with ion-neutral collisions (kinetic approach) , 2008 .

[6]  S. Khrapak,et al.  Accurate momentum transfer cross section for the attractive Yukawa potential , 2014, 1404.4505.

[7]  G. Morfill,et al.  Supersonic dislocations observed in a plasma crystal. , 2007, Physical review letters.

[8]  W. Goedheer,et al.  Simulation of dust voids in complex plasmas , 2008 .

[9]  Direct measurement of the speed of sound in a complex plasma under microgravity conditions , 2011 .

[10]  Accurate transport cross sections for the Lennard-Jones potential , 2014, 1404.5476.

[11]  S. Khrapak,et al.  Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force , 2009 .

[12]  G. Morfill,et al.  Scattering in the attractive Yukawa potential in the limit of strong interaction. , 2003, Physical review letters.

[13]  R. Merlino,et al.  Laboratory observation of the dust-acoustic wave mode , 1995 .

[14]  E. Thomas Driven dust acoustic waves with thermal effects: Comparison of experiment to fluid theory , 2010 .

[15]  S. Yurchenko,et al.  Interpolation method for pair correlations in classical crystals , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[17]  T. Trottenberg,et al.  Dust confinement and dust-acoustic waves in weakly magnetized anodic plasmas , 2006 .

[18]  G. Morfill,et al.  Direct observation of mode-coupling instability in two-dimensional plasma crystals. , 2010, Physical review letters.

[19]  R. Farouki,et al.  Triple point of Yukawa systems , 1997 .

[20]  G. Morfill,et al.  Determination of the ion-drag force in a complex plasma , 2005 .

[21]  G. Morfill,et al.  COMPACT DUSTY CLOUDS IN A COSMIC ENVIRONMENT , 2013, 1310.5958.

[22]  I. Krivtsun,et al.  On the effect of ion-neutral collisions on dust grain screening in a low- pressure gas discharge plasma , 2012 .

[23]  T. Hyde,et al.  Photophoresis on polydisperse basalt microparticles under microgravity , 2014 .

[24]  Elena G. Lavrenko,et al.  Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station. , 2016, The Review of scientific instruments.

[25]  G. Morfill,et al.  Formation of bubbles, blobs, and surface cusps in complex plasmas. , 2009, Physical review letters.

[26]  G. Morfill,et al.  Highly resolved self-excited density waves in a complex plasma. , 2007, Physical review letters.

[27]  S. Ratynskaia,et al.  Soft mean spherical approximation for dusty plasma liquids: One-component Yukawa systems with plasma shielding. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  S. Khrapak Ion drag force on an absorbing body in highly collisional plasmas , 2007 .

[29]  M H Thoma,et al.  Particle flows in a dc discharge in laboratory and microgravity conditions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  J. Goree,et al.  Plasma crystal: Coulomb crystallization in a dusty plasma. , 1994, Physical review letters.

[31]  V. Fortov,et al.  Ekoplasma - Experiments with Grid Electrodes in Microgravity , 2018 .

[32]  G. Ganguli,et al.  Instability-triggered phase transition to a dusty-plasma condensate. , 2002, Physical review letters.

[33]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[34]  G. Morfill,et al.  Complex plasmas: An interdisciplinary research field , 2009 .

[35]  J. Goree,et al.  PKE-Nefedov*: plasma crystal experiments on the International Space Station , 2003 .

[36]  G. Morfill,et al.  Compressional waves in complex (dusty) plasmas under microgravity conditions , 2003 .

[37]  S. Khrapak,et al.  Thermodynamics of Yukawa systems and sound velocity in dusty plasmas , 2015 .

[38]  G. Morfill,et al.  Interaction potential of microparticles in a plasma: role of collisions with plasma particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  H. Thomas,et al.  Shear flow instability at the interface among two streams of a highly dissipative complex plasma , 2011 .

[40]  G. Morfill,et al.  Recrystallization of a 2D plasma crystal. , 2007, Physical review letters.

[41]  G. Morfill,et al.  Melting dynamics of a plasma crystal , 1996, Nature.

[42]  G. Morfill,et al.  Convection in a dusty radio-frequency plasma under the influence of a thermal gradient , 2011 .

[43]  M. Schwabe,et al.  Simulating the dynamics of complex plasmas. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  G. Morfill,et al.  Anisotropic dust lattice modes. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Gregor E. Morfill,et al.  Hybrid approach to the ion drag force , 2005 .

[46]  I. Krivtsun,et al.  Ion drag force on a dust grain in a weakly ionized collisional plasma , 2013 .

[47]  Capacitively coupled rf discharge with a large amount of microparticles: Spatiotemporal emission pattern and microparticle arrangement. , 2017, Physical review. E.

[48]  G. Morfill,et al.  Nonviscous motion of a slow particle in a dust crystal under microgravity conditions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  G. Morfill,et al.  Ion drag force in complex plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  S. Khrapak,et al.  Grain charging in an intermediately collisional plasma , 2012 .

[51]  M. Schwabe,et al.  Turbulence in an Auto-Oscillating Complex Plasma , 2018, IEEE Transactions on Plasma Science.

[52]  R. Merlino 25 years of dust acoustic waves , 2014 .

[53]  G. Morfill,et al.  Highly resolved fluid flows: "liquid plasmas" at the kinetic level. , 2004, Physical review letters.

[54]  H. Thomas,et al.  Complex Plasma Research under Microgravity Conditions: PK‐3 Plus Laboratory on the International Space Station , 2016 .

[55]  D. Frenkel,et al.  Melting line of Yukawa system by computer simulation , 1991 .

[56]  Gregor E. Morfill,et al.  Complex (dusty) plasmas: current status, open issues, perspectives , 2005 .

[57]  V. Fortov,et al.  Density waves at the interface of a binary complex plasma , 2017, 1701.07210.

[58]  H. Löwen,et al.  Dynamics of lane formation in driven binary complex plasmas. , 2008, Physical review letters.

[59]  M. Schwabe,et al.  Instability onset and scaling laws of an auto-oscillating turbulent flow in a complex plasma. , 2017, Physical review. E.

[60]  V. Fortov,et al.  Observation of metallic sphere–complex plasma interactions in microgravity , 2017 .

[61]  G. Morfill,et al.  Particle charge in the bulk of gas discharges. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  S. Yurchenko,et al.  Practical thermodynamics of Yukawa systems at strong coupling. , 2015, The Journal of chemical physics.

[63]  H. Thomas,et al.  Crystal–liquid phase transitions in three-dimensional complex plasma under microgravity conditions , 2018 .

[64]  Jeremiah D. Williams Volumetric measurements of a spatially growing dust acoustic wave , 2012 .

[65]  G. Morfill,et al.  Simple estimation of thermodynamic properties of Yukawa systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Gregor E. Morfill,et al.  Complex and Dusty Plasmas: From Laboratory to Space , 2009 .

[67]  Gravity compensation in complex plasmas by application of a temperature gradient. , 2001, Physical review letters.

[68]  M. Kretschmer,et al.  Crystallization of a three-dimensional complex plasma under laboratory conditions , 2017 .

[69]  J. Goree,et al.  Condensed Plasmas under Microgravity , 1999 .

[70]  A. Ivlev,et al.  Equilibrium and Non‐Equilibrium Melting of Two‐Dimensional Plasma Crystals , 2015 .

[71]  S. Khrapak Classical scattering in strongly attractive potentials. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  P. Huber Untersuchung von 3-D Plasmakristallen , 2011 .

[73]  J. Allen,et al.  Probe theory - the orbital motion approach , 1992 .

[74]  K. Tachibana,et al.  Observation of Coulomb-Crystal Formation from Carbon Particles Grown in a Methane Plasma , 1994 .

[75]  W. Bunk,et al.  Kinetic development of crystallization fronts in complex plasmas , 2006 .

[76]  R. Quinn,et al.  Experimental determination of dust-particle charge in a discharge plasma at elevated pressures. , 2004, Physical review letters.

[77]  A. Piel,et al.  Measurement of the ion drag force on free falling microspheres in a plasma , 2004 .

[78]  Ian H. Hutchinson,et al.  Collisionless ion drag force on a spherical grain , 2006 .

[79]  Berkeley,et al.  Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions , 2014, 1411.7641.

[80]  Valeriy V. Gavrishchaka,et al.  Trapped ion effect on shielding, current flow, and charging of a small object in a plasma , 2003 .

[81]  M. Schwabe,et al.  Latest Results on Complex Plasmas with the PK-3 Plus Laboratory on Board the International Space Station , 2018 .

[82]  V. Fortov,et al.  Micron-sized particle-charge measurements in an inductive rf gas-discharge plasma using gravity-driven probe grains. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  M. Schwabe,et al.  Wave turbulence observed in an auto-oscillating complex (dusty) plasma , 2015 .

[84]  A. Ivlev,et al.  Fluid phase separation in binary complex plasmas , 2009 .

[85]  G. Morfill,et al.  Complex plasma—the plasma state of soft matter , 2010 .

[86]  R. Quinn,et al.  Comment on “Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas” [Phys. Plasmas 10, 1278 (2003)] , 2003 .

[87]  G. Morfill,et al.  On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas , 2012, 1206.5968.

[88]  A. Piel,et al.  Dust-free regions around Langmuir probes in complex plasmas under microgravity. , 2004, Physical review letters.

[89]  S. Volkov,et al.  Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  G. Morfill,et al.  Measurement of the ion drag force in a collisionless plasma with strong ion-grain coupling , 2007 .

[91]  J. Goree,et al.  Theory of dust voids in plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[92]  S. Vladimirov,et al.  Superfluidlike motion of an absorbing body in a collisional plasma. , 2008, Physical review letters.

[93]  R. Merlino Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments , 2009 .

[94]  G. Morfill,et al.  Void Closure in Complex Plasmas under Microgravity Conditions. , 2007, Physical review letters.

[95]  G. Morfill,et al.  Scattering in the attractive Yukawa potential: application to the ion-drag force in complex plasmas , 2004, IEEE Transactions on Plasma Science.

[96]  A. Müller,et al.  Photophoretic force on microparticles in complex plasmas , 2017 .

[97]  Gregor E. Morfill,et al.  Relationship between the ion drag and electric forces in dense dust clouds , 2013 .

[98]  C. Leith Diffusion Approximation for Two‐Dimensional Turbulence , 1968 .

[99]  J. Goree,et al.  Theory of collision-dominated dust voids in plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  G. Morfill,et al.  Electrostatic modes in collisional complex plasmas under microgravity conditions. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  W. Goedheer,et al.  Modeling of voids in colloidal plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Ian H. Hutchinson,et al.  Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force , 2004 .

[103]  Z. Zakrzewski,et al.  RESEARCH NOTES: Effect of collisions on positive ion collection by a cylindrical Langmuir probe , 1974 .

[104]  T. Trottenberg,et al.  Experimental determination of the charge on dust particles forming Coulomb lattices , 1994 .

[105]  M. Schwabe,et al.  Mach cones in a three-dimensional complex plasma , 2009 .

[106]  T. Reiter,et al.  Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station , 2011 .

[107]  T. Reiter,et al.  Auto-oscillations in complex plasmas , 2010 .

[108]  H. Thomas,et al.  Momentum transfer cross-section for ion scattering on dust particles , 2017 .

[109]  A. Ivlev,et al.  Ion drag force in dusty plasmas , 2004 .

[110]  G. Morfill,et al.  Force field inside the void in complex plasmas under microgravity conditions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  G. Joyce,et al.  First observation of electrorheological plasmas. , 2008, Physical review letters.

[112]  J. Goree,et al.  Instabilities in a dusty plasma with ion drag and ionization , 1999 .

[113]  G. Joyce,et al.  Force on a charged test particle in a collisional flowing plasma. , 2004, Physical review letters.

[114]  S. Yurchenko,et al.  Pair correlations in classical crystals: The shortest-graph method. , 2015, The Journal of chemical physics.

[115]  B. Klumov On melting criteria for complex plasma , 2011 .

[116]  G. Morfill,et al.  Grain surface temperature in noble gas discharges: Refined analytical model , 2006 .

[117]  V. Fortov,et al.  Density distribution of a dust cloud in three-dimensional complex plasmas. , 2016, Physical review. E.

[118]  H. Thomas,et al.  Practical expressions for the internal energy and pressure of Yukawa fluids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  Melzer,et al.  Experimental investigation of the melting transition of the plasma crystal. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[120]  G. Morfill,et al.  An interpolation formula for the ion flux to a small particle in collisional plasmas , 2008 .

[121]  I. Hutchinson,et al.  Collisional effects on nonlinear ion drag force for small grains , 2013, 1305.6944.

[122]  G. Morfill,et al.  Improved theoretical approximation for the ion drag force in collisionless plasma with strong ion-grain coupling , 2009 .

[123]  V. A. Sinel’shchikov,et al.  On the charge of dust particles in a low-pressure gas discharge plasma , 2000 .

[124]  S. Volkov,et al.  Freezing and melting of 3D complex plasma structures under microgravity conditions driven by neutral gas pressure manipulation. , 2011, Physical review letters.

[125]  G. Morfill,et al.  The 'classical tunnelling effect'—observations and theory , 2006 .

[126]  H. Thomas,et al.  Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[127]  A. Ivlev,et al.  Ion sphere model for Yukawa systems (dusty plasmas) , 2014, 1410.2059.

[128]  W. Goedheer,et al.  Effect of large-angle scattering, ion flow speed and ion-neutral collisions on dust transport under microgravity conditions , 2006 .

[129]  J. Goree,et al.  Long-range attractive and repulsive forces in a two-dimensional complex (dusty) plasma. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[130]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[131]  N. D’angelo Coulomb solids and low-frequency fluctuations in RF dusty plasmas , 1994 .

[132]  G. Morfill,et al.  Kinetic approach for the ion drag force in a collisional plasma. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  U. Kortshagen,et al.  Analytical model of particle charging in plasmas over a wide range of collisionality. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  G. Morfill,et al.  Complex plasma laboratory PK-3 Plus on the International Space Station , 2008 .

[135]  Leonardo Patacchini,et al.  Computation of the effect of neutral collisions on ion current to a floating sphere in a stationary plasma , 2007 .