A Model of Continuous Sedimentation of Flocculated Suspensions in Clarifier-Thickener Units

The chief purpose of this paper is to formulate and partly analyze a new mathematical model for continuous sedimentation-consolidation processes of flocculated suspensions in clarifier-thickener units. This model appears in two variants for cylindrical and variable cross-sectional area units, respectively (Models 1 and 2). In both cases, the governing equation is a scalar, strongly degenerate parabolic equation in which both the convective and diffusion fluxes depend on parameters that are discontinuous functions of the depth variable. The initial value problem for this equation is analyzed for Model 1. We introduce a simple finite difference scheme and prove its convergence to a weak solution that satisfies an entropy condition. A limited analysis of steady states as desired stationary modes of operation is performed. Numerical examples illustrate that the model realistically describes the dynamics of flocculated suspensions in clarifier-thickeners.

[1]  Raimund Bürger,et al.  Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions , 2004 .

[2]  A. I. Vol'pert,et al.  Cauchy's Problem for Degenerate Second Order Quasilinear Parabolic Equations , 1969 .

[3]  John D. Towers,et al.  CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME AND STABILITY FOR CONSERVATION LAWS WITH A DISCONTINUOUS SPACE-TIME DEPENDENT FLUX , 2004 .

[4]  Gui-Qiang G. Chen,et al.  Stability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations , 2001, SIAM J. Math. Anal..

[5]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[6]  L. Lin,et al.  A comparison of convergence rates for Godunov's method and Glimm's method in resonant nonlinear systems of conservation laws , 1995 .

[7]  Kenneth H. Karlsen,et al.  Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations , 2004, SIAM J. Math. Anal..

[8]  John D. Towers A Difference Scheme for Conservation Laws with a Discontinuous Flux: The Nonconvex Case , 2001, SIAM J. Numer. Anal..

[9]  Kenneth H. Karlsen,et al.  A relaxation scheme for conservation laws with a discontinuous coefficient , 2003, Math. Comput..

[10]  Stefan Diehl,et al.  A conservation Law with Point Source and Discontinuous Flux Function Modelling Continuous Sedimentation , 1996, SIAM J. Appl. Math..

[11]  Nicolas Seguin,et al.  ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS , 2003 .

[12]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[13]  Jérôme Jaffré,et al.  Numerical calculation of the flux across an interface between two rock types of a porous medium for a two-phase flow , .

[14]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[15]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[16]  Blake Temple,et al.  Suppression of oscillations in Godunov's method for a resonant non-strictly hyperbolic system , 1995 .

[17]  Moshe Sheintuch,et al.  Steady state analysis of a continuous clarifier‐thickener system , 1986 .

[18]  Siddhartha Mishra Convergence of Upwind Finite Difference Schemes for a Scalar Conservation Law with Indefinite Discontinuities in the Flux Function , 2005, SIAM J. Numer. Anal..

[19]  Jérôme Jaffré,et al.  Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004, SIAM J. Numer. Anal..

[20]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[21]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[22]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[23]  Stefan Diehl,et al.  On boundary conditions and solutions for ideal clarifier–thickener units , 2000 .

[24]  J. Ph. Chancelier,et al.  Analysis of a Conservation PDE With Discontinuous Flux: A Model of Settler , 1994, SIAM J. Appl. Math..

[25]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[26]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[27]  Peter J. Scales,et al.  The characterisation of slurry dewatering , 2000 .

[28]  N. G. Barton,et al.  Control of a surface of discontinuity in continuous thickness , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[29]  W. Lyons,et al.  Conservation laws with sharp inhomogeneities , 1983 .

[30]  Knut-Andreas Lie,et al.  Numerical methods for the simulation of the settling of flocculated suspensions , 2000, Chemical Engineering Journal.

[31]  T. Gimse Conservation laws with discontinuous flux functions , 1993 .

[32]  J. F. Van Impe,et al.  Role of the diffusion coefficient in one-dimensional convection – diffusion models for sedimentation/thickening in secondary settling tanks , 2003 .

[33]  G. J. Kynch A theory of sedimentation , 1952 .

[34]  Raimund Bürger,et al.  Monotone difference approximations for the simulation of clarifier-thickener units , 2004 .

[35]  Christian Klingenberg,et al.  Stability of a Resonant System of Conservation Laws Modeling Polymer Flow with Gravitation , 2001 .

[36]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[37]  Raimund Bürger,et al.  Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes: numerical simulation of the transient behaviour of flocculated suspensions in an ideal batch or continuous thickener , 1999 .

[38]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[39]  Anthony Michel,et al.  Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..

[40]  K. Karlsen,et al.  A Relaxation Scheme for Continuous Sedimentation in Ideal Clarifier-Thicke ner Units , 2005 .

[41]  Christian Klingenberg,et al.  A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units , 2003 .

[42]  Daniel N. Ostrov Viscosity Solutions and Convergence of Monotone Schemes for Synthetic Aperture Radar Shape-from-Shading Equations with Discontinuous Intensities , 1999, SIAM J. Appl. Math..

[43]  Laurent Gosse,et al.  Godunov-type approximation for a general resonant balance law with large data , 2004 .

[44]  A. Volpert Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equations , 2000, Advances in Differential Equations.

[45]  Stefan Diehl,et al.  On scalar conservation laws with point source and discontinuous flux function , 1995 .

[46]  Daniel N. Ostrov Solutions of Hamilton–Jacobi Equations and Scalar Conservation Laws with Discontinuous Space–Time Dependence , 2002 .

[47]  Nils Henrik Risebro,et al.  STABILITY OF CONSERVATION LAWS WITH DISCONTINUOUS COEFFICIENTS , 1999 .

[48]  Siam Staff,et al.  Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004 .

[49]  Stefan Diehl,et al.  Operating charts for continuous sedimentation I: Control of steady states , 2001 .

[50]  Mauro Garavello,et al.  Conservation laws with discontinuous flux , 2007, Networks Heterog. Media.

[51]  R. Bürger,et al.  Settling velocities of particulate systems: 11. Comparison of the phenomenological sedimentation–consolidation model with published experimental results , 1999 .

[52]  John D. Towers,et al.  L¹ STABILITY FOR ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE PARABOLIC CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS COEFFICIENTS , 2003 .

[53]  Raimund Bürger,et al.  Settling velocities of particulate systems: 12. Batch centrifugation of flocculated suspensions , 2001 .

[54]  R. Bürgera,et al.  Applications of the phenomenological theory to several published experimental cases of sedimentation processes , 2000 .

[55]  Ross G. de Kretser,et al.  Validation of a new filtration technique for dewaterability characterization , 2001 .

[56]  John D. Towers,et al.  Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.

[57]  Helge Kristian Jenssen,et al.  Well-Posedness for a Class of 2_2 Conservation Laws with L Data , 1997 .

[58]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[59]  Jincai Chang,et al.  Capillary effects in steady-state flow in heterogeneous cores , 1989 .

[60]  N. Risebro,et al.  ON A NONLINEAR DEGENERATE PARABOLIC TRANSPORT-DIFFUSION EQUATION WITH A DISCONTINUOUS COEFFICIENT , 2002 .

[61]  B. Temple Global solution of the cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws , 1982 .

[62]  Stefan Diehl Dynamic and Steady-State Behavior of Continuous Sedimentation , 1997, SIAM J. Appl. Math..

[63]  John D. Towers Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..

[64]  Ross G. de Kretser,et al.  Rapid filtration measurement of dewatering design and optimization parameters , 2001 .

[65]  E. F. Kaasschieter Solving the Buckley–Leverett equation with gravity in a heterogeneous porous medium , 1999 .

[66]  Gijs Molenaar Entropy conditions for heterogeneity induced shocks in two-phase flow problems , 1995 .

[67]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[68]  N. Risebro,et al.  Solution of the Cauchy problem for a conservation law with a discontinuous flux function , 1992 .

[69]  Christian Klingenberg,et al.  Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .

[70]  Raimund Bürger,et al.  Numerical methods for the simulation of continuous sedimentation in ideal clarifier-thickener units , 2004 .

[71]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .