Multi-criteria optimization in nonlinear predictive control

The multi-criteria predictive control of nonlinear dynamical systems based on Artificial Neural Networks (ANNs) and genetic algorithms (GAs) are considered. The (ANNs) are used to determine process models at each operating level; the control action is provided by minimizing a set of control objective which is function of the future prediction output and the future control actions in tacking in account constraints in input signal. An aggregative method based on the Non-dominated Sorting Genetic Algorithm (NSGA) is applied to solve the multi-criteria optimization problem. The results obtained with the proposed control scheme are compared in simulation to those obtained with the multi-model control approach.

[1]  Alberto Herreros,et al.  MRCD: a genetic algorithm for multiobjective robust control design ☆ , 2002 .

[2]  Robert Babuška,et al.  Genetic algorithms for optimization in predictive control , 1997 .

[3]  Evaristo Chalbaud Biscaia,et al.  Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors , 2003, Comput. Chem. Eng..

[4]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[7]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[8]  Seiichi Kawata,et al.  Genetic algorithms for optimal feedback control design , 1996 .

[9]  Primoz Potocnik,et al.  Nonlinear model predictive control of a cutting process , 2002, Neurocomputing.

[10]  Doug Cooper,et al.  A practical multiple model adaptive strategy for single-loop MPC , 2003 .

[11]  Mark Plutowski,et al.  Selecting concise training sets from clean data , 1993, IEEE Trans. Neural Networks.

[12]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[13]  Darci Odloak,et al.  LMI-Based Multi-model Predictive Control of an Industrial C3/C4 Splitter , 2003, Journal of Control, Automation and Electrical Systems.

[14]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[15]  M. Ksouri-Lahmari,et al.  Contributions à la commande multimodèle des processus complexes , 1999 .

[16]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[17]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[18]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[19]  Xavier Blasco,et al.  Generalized predictive control using genetic algorithms (GAGPC) , 1998 .

[20]  François Delmotte Analyse multi-modèle , 1997 .

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .