Efficient Construction of a Bounded Degree Spanner with Low Weight
暂无分享,去创建一个
[1] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[2] Gautam Das,et al. Constructing Degree-3 Spanners with Other Sparseness Properties , 1993, ISAAC.
[3] Pravin M. Vaidya,et al. A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..
[4] Michiel H. M. Smid,et al. Static and Dynamic Algorithms for k-Point Clustering Problems , 1993, J. Algorithms.
[5] Michiel H. M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time , 1991, SODA '91.
[6] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[7] Jeffrey S. Salowe. Enumerating interdistances in space , 1992, Int. J. Comput. Geom. Appl..
[8] Giri Narasimhan,et al. Fast algorithms for constructing t-spanners and paths with stretch t , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[9] Jeffrey S. Salowe. Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..
[10] Giri Narasimhan,et al. New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..
[11] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[12] Michiel H. M. Smid,et al. Enumerating the k closest pairs optimally , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[13] Matthew Dickerson,et al. Simple algorithms for enumerating interpoint distances and finding $k$ nearest neighbors , 1992, Int. J. Comput. Geom. Appl..
[14] Jeffrey S. Salowe. On Euclidean spanner graphs with small degree , 1992, SCG '92.
[15] Andrew Chi-Chih Yao,et al. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..
[16] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.