A New Chaotic Attractor and Its Synchronization Implementation

A new three-dimensional autonomous chaotic system is proposed in this paper. It analyzes dynamic behaviors of this new system, including the stability of equilibria, the system dissipativity, poincare maps, Lyapunov exponent, bifurcation, wave forms, and spectrum. Numeral simulation is performed in Matlab. A chaotic circuit is designed, and the corresponding circuit simulation is conducted. The results show that the chaotic attractor exists in the new system. The synchronization problem of the chaotic system is solved with a synchronization method, and its synchronization circuit is designed. Numeral simulation and circuit simulation show that the synchronization problem of this chaotic system proposed is solved.

[1]  KITDAKORN KLOMKARN,et al.  New Construction of Mixed-Mode Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[2]  Jesus M. Munoz-Pacheco,et al.  Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers , 2010 .

[3]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[4]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[5]  L. C. Gómez-Pavón,et al.  Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems , 2012 .

[6]  Liu Chong-Xin,et al.  Synchronization of Liu chaotic system based on linear feedback control and its experimental verification , 2006 .

[7]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[8]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[9]  E. Tlelo-Cuautle,et al.  N-scroll chaotic attractors from saturated function series employing CCII+s , 2010 .

[10]  Carlos Sánchez-López,et al.  Multiscroll floating gate–based integrated chaotic oscillator , 2013, Int. J. Circuit Theory Appl..

[11]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[12]  Jiangang Zhang,et al.  Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .

[13]  Robert W. Newcomb,et al.  Chaos generation using binary hysteresis , 1986 .

[14]  Teh-Lu Liao,et al.  Adaptive control and synchronization of Lorenz systems , 1999 .

[15]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[16]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[17]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[18]  Esteban Tlelo-Cuautle,et al.  Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators , 2014 .

[19]  Ahmed S. Elwakil,et al.  Experimental Verification of the Butterfly Attractor in a Modified Lorenz System , 2002, Int. J. Bifurc. Chaos.

[20]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[21]  Wang Xing-Yuan,et al.  Synchronization of new Lü chaotic system via three methods , 2011 .

[22]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[23]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[24]  L. Chua,et al.  Communication Systems via Chaotic Signals from a Reconstruction Viewpoint , 1997 .

[25]  V. Sundarapandian,et al.  Analysis, control, synchronization, and circuit design of a novel chaotic system , 2012, Math. Comput. Model..

[26]  Ahmed Sadek Hegazi,et al.  Adaptive Synchronization for RÖssler and Chua's Circuit Systems , 2002, Int. J. Bifurc. Chaos.

[27]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[28]  César Cruz-Hernández,et al.  Chaotic Communication System Using Chua's oscillators Realized with Ccii+s , 2009, Int. J. Bifurc. Chaos.

[29]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[30]  Xinghuo Yu Controlling Lorenz chaos , 1996, Int. J. Syst. Sci..

[31]  L. Chua,et al.  The double scroll family , 1986 .

[32]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[33]  Yun Chen,et al.  Global anti-synchronization of master-slave chaotic modified Chua's circuits coupled by linear feedback control , 2010, Math. Comput. Model..

[34]  Carlos Sánchez-López,et al.  Frequency behavior of saturated nonlinear function series based on opamps , 2013 .

[35]  O. Rössler An equation for continuous chaos , 1976 .

[36]  Guanrong Chen,et al.  Design and Implementation of Compound Chaotic attractors , 2012, Int. J. Bifurc. Chaos.

[37]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .