The bacterial interlocked process ONtology (BiPON): a systemic multi-scale unified representation of biological processes in prokaryotes

BackgroundHigh-throughput technologies produce huge amounts of heterogeneous biological data at all cellular levels. Structuring these data together with biological knowledge is a critical issue in biology and requires integrative tools and methods such as bio-ontologies to extract and share valuable information. In parallel, the development of recent whole-cell models using a systemic cell description opened alternatives for data integration. Integrating a systemic cell description within a bio-ontology would help to progress in whole-cell data integration and modeling synergistically.ResultsWe present BiPON, an ontology integrating a multi-scale systemic representation of bacterial cellular processes. BiPON consists in of two sub-ontologies, bioBiPON and modelBiPON. bioBiPON organizes the systemic description of biological information while modelBiPON describes the mathematical models (including parameters) associated with biological processes. bioBiPON and modelBiPON are related using bridge rules on classes during automatic reasoning. Biological processes are thus automatically related to mathematical models. 37% of BiPON classes stem from different well-established bio-ontologies, while the others have been manually defined and curated. Currently, BiPON integrates the main processes involved in bacterial gene expression processes.ConclusionsBiPON is a proof of concept of the way to combine formally systems biology and bio-ontology. The knowledge formalization is highly flexible and generic. Most of the known cellular processes, new participants or new mathematical models could be inserted in BiPON. Altogether, BiPON opens up promising perspectives for knowledge integration and sharing and can be used by biologists, systems and computational biologists, and the emerging community of whole-cell modeling.

[1]  T. Henkin,et al.  Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses. , 2016, Annual review of microbiology.

[2]  S. Yamashita,et al.  Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases , 2014, Front. Genet..

[3]  Yan Zhang,et al.  Replication–transcription conflicts in bacteria , 2012, Nature Reviews Microbiology.

[4]  T. Henkin Riboswitch RNAs: using RNA to sense cellular metabolism. , 2008, Genes & development.

[5]  Peter J. Russell,et al.  iGenetics: A Molecular Approach , 2005 .

[6]  R. Buckingham,et al.  Translational termination comes of age. , 2000, TIBS -Trends in Biochemical Sciences. Regular ed.

[7]  Judith A. Blake,et al.  Modeling biochemical pathways in the gene ontology , 2016, Database J. Biol. Databases Curation.

[8]  D. Gautheret,et al.  Transcription attenuation in bacteria: theme and variations. , 2009, Briefings in functional genomics & proteomics.

[9]  R. Ebright,et al.  Direct Detection of Abortive RNA Transcripts in Vivo , 2009, Science.

[10]  Pohl Milón,et al.  Real-time assembly landscape of bacterial 30S translation initiation complex , 2012, Nature Structural &Molecular Biology.

[11]  V. Fromion,et al.  Quantitative prediction of genome-wide resource allocation in bacteria. , 2015, Metabolic engineering.

[12]  E. Evguenieva-Hackenberg,et al.  New aspects of RNA processing in prokaryotes. , 2011, Current opinion in microbiology.

[13]  Pascal Hitzler,et al.  OWL and Rules , 2011, Reasoning Web.

[14]  Kenneth C. Keiler,et al.  Mechanisms of ribosome rescue in bacteria , 2015, Nature Reviews Microbiology.

[15]  Evgeny Nudler,et al.  RNA Polymerase Backtracking in Gene Regulation and Genome Instability , 2012, Cell.

[16]  Judith A. Blake,et al.  Beyond the data deluge: Data integration and bio-ontologies , 2006, J. Biomed. Informatics.

[17]  Wolter J. Fabrycky,et al.  Systems engineering and analysis , 1981 .

[18]  Alberto Abelló,et al.  Automating multidimensional design from ontologies , 2007, DOLAP '07.

[19]  Antoine M. van Oijen,et al.  Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies , 2013, Nature Reviews Microbiology.

[20]  Yulia Yuzenkova,et al.  New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel , 2015, Biomolecules.

[21]  R. Breaker Riboswitches and the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[22]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[23]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[24]  C. Yanofsky,et al.  Tandem Transcription and Translation Regulatory Sensing of Uncharged Tryptophan tRNA , 2003, Science.

[25]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[26]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[27]  M. Rodnina,et al.  Ribosome fidelity: tRNA discrimination, proofreading and induced fit. , 2001, Trends in biochemical sciences.

[28]  P. S. Lovett,et al.  Ribosome regulation by the nascent peptide. , 1996, Microbiological reviews.

[29]  Wade C. Winkler,et al.  A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator , 2014, Science.

[30]  Ruben L. Gonzalez,et al.  Conformational selection of translation initiation factor 3 signals proper substrate selection , 2013, Nature Structural &Molecular Biology.

[31]  C. Turnbough,et al.  Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. , 1997, Science.

[32]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[33]  P. Babitzke,et al.  Translation Control of trpG from Transcripts Originating from the Folate Operon Promoter of Bacillus subtilis Is Influenced by Translation-Mediated Displacement of Bound TRAP, While Translation Control of Transcripts Originating from a Newly Identified trpG Promoter Is Not , 2006, Journal of bacteriology.

[34]  Sarah M. Keating,et al.  BioModels: Content, Features, Functionality, and Use , 2015, CPT: pharmacometrics & systems pharmacology.

[35]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[36]  J. Vogel,et al.  Identification of regulatory RNAs in Bacillus subtilis , 2010, Nucleic acids research.

[37]  Michel Dumontier,et al.  Controlled vocabularies and semantics in systems biology , 2011, Molecular systems biology.

[38]  Vitaly Epshtein,et al.  An allosteric mechanism of Rho-dependent transcription termination , 2010, Nature.

[39]  The Gene Ontology Consortium,et al.  Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[40]  Jeremy W. Dale,et al.  Molecular Genetics of Bacteria , 1989 .

[41]  R. Britton,et al.  Biochemical Characterization of Ribosome Assembly GTPase RbgA in Bacillus subtilis* , 2012, The Journal of Biological Chemistry.

[42]  Måns Ehrenberg,et al.  How initiation factors tune the rate of initiation of protein synthesis in bacteria , 2006, The EMBO journal.

[43]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[44]  David Tollervey,et al.  The function and synthesis of ribosomes , 2001, Nature Reviews Molecular Cell Biology.

[45]  K. Nierhaus,et al.  The assembly of prokaryotic ribosomes. , 1991, Biochimie.

[46]  Stefan Aachen,et al.  Recoding Expansion Of Decoding Rules Enriches Gene Expression , 2016 .

[47]  Hiroaki Kitano,et al.  Foundations of systems biology , 2001 .

[48]  C. Turnbough,et al.  Regulation of Pyrimidine Biosynthetic Gene Expression in Bacteria: Repression without Repressors , 2008, Microbiology and Molecular Biology Reviews.

[49]  J. K. Herman,et al.  RelA Inhibits Bacillus subtilis Motility and Chaining , 2014, Journal of bacteriology.

[50]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[51]  Ya-Ming Hou,et al.  CCA addition to tRNA: Implications for tRNA quality control , 2010, IUBMB life.

[52]  Jörgen Johansson,et al.  RNAs: regulators of bacterial virulence , 2010, Nature Reviews Microbiology.

[53]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[54]  Peter Uetz,et al.  An ontology for microbial phenotypes , 2014, BMC Microbiology.

[55]  Boris Motik,et al.  HermiT: An OWL 2 Reasoner , 2014, Journal of Automated Reasoning.

[56]  C. Yanofsky,et al.  RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria. , 2007, RNA.

[57]  V. Fromion,et al.  Bacterial growth rate reflects a bottleneck in resource allocation. , 2011, Biochimica et biophysica acta.

[58]  Vincent Fromion,et al.  Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis , 2008, BMC Systems Biology.

[59]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[60]  Eric D Brown,et al.  Chemical modulators of ribosome biogenesis as biological probes. , 2015, Nature chemical biology.

[61]  D. Söll,et al.  Quality control mechanisms during translation. , 1999, Science.

[62]  Robert Stevens,et al.  The Manchester OWL Syntax , 2006, OWLED.

[63]  Manja Marz,et al.  A pRNA‐induced structural rearrangement triggers 6S‐1 RNA release from RNA polymerase in Bacillus subtilis , 2012, The EMBO journal.

[64]  Hiroshi Yamamoto,et al.  EF-G and EF4: translocation and back-translocation on the bacterial ribosome , 2013, Nature Reviews Microbiology.

[65]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[66]  Udo Bläsi,et al.  Identification of an RNase J ortholog in Sulfolobus solfataricus: implications for 5'-to-3' directional decay and 5'-end protection of mRNA in Crenarchaeota. , 2011, RNA.

[67]  Carmen Molina-París,et al.  Backtracking and proofreading in DNA transcription. , 2009, Physical review letters.

[68]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[69]  Melinda R. Dwinell,et al.  The pathway ontology – updates and applications , 2014, Journal of Biomedical Semantics.

[70]  Bin Zhao,et al.  OGG: a Biological Ontology for Representing Genes and Genomes in Specific Organisms , 2014, ICBO.

[71]  V. Fromion,et al.  Translation elicits a growth rate‐dependent, genome‐wide, differential protein production in Bacillus subtilis , 2016, Molecular systems biology.

[72]  J. Achenbach,et al.  The mechanics of ribosomal translocation. , 2015, Biochimie.

[73]  José Norberto Mazón López,et al.  Using ontologies for the design of data warehouses , 2011 .

[74]  Jianlin Lei,et al.  Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy , 2011, Proceedings of the National Academy of Sciences.

[75]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Jue D. Wang,et al.  Control of bacterial transcription, translation and replication by (p)ppGpp. , 2008, Current opinion in microbiology.

[77]  Weiwen Zhang,et al.  Integrating multiple 'omics' analysis for microbial biology: application and methodologies. , 2010, Microbiology.

[78]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[79]  Michel Dumontier,et al.  Integrating systems biology models and biomedical ontologies , 2011, BMC Systems Biology.

[80]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[81]  A. Kaji,et al.  Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. , 2012, Journal of molecular biology.

[82]  R. Gillet,et al.  The task force that rescues stalled ribosomes in bacteria. , 2013, Trends in biochemical sciences.

[83]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[84]  Paul Gollnick,et al.  Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. , 2005, Annual review of genetics.

[85]  P. V. Hippel,et al.  An Integrated Model of the Transcription Complex in Elongation, Termination, and Editing , 1998 .

[86]  Vincent Fromion,et al.  Cell design in bacteria as a convex optimization problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[87]  Olivier Bodenreider,et al.  Bio-ontologies: current trends and future directions , 2006, Briefings Bioinform..

[88]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[89]  Kimberly Van Auken,et al.  A guide to best practices for Gene Ontology (GO) manual annotation , 2013, Database J. Biol. Databases Curation.

[90]  K. Brodolin,et al.  Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing , 2011, Nucleic acids research.

[91]  Pohl Milón,et al.  Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin , 2016, Antibiotics.

[92]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[93]  Benjamin P Tu,et al.  Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. , 2012, Molecular cell.

[94]  K. Wassarman Small RNAs in Bacteria Diverse Regulators of Gene Expression in Response to Environmental Changes , 2002, Cell.

[95]  R. Gourse,et al.  An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation , 2004, The EMBO journal.

[96]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[97]  C. Yanofsky Transcription Attenuation: Once Viewed as a Novel Regulatory Strategy , 2000, Journal of bacteriology.

[98]  S. Greive,et al.  Thinking quantitatively about transcriptional regulation , 2005, Nature Reviews Molecular Cell Biology.

[99]  Sabine Petry,et al.  The termination of translation. , 2008, Current opinion in structural biology.

[100]  Paul N. Schofield,et al.  The role of ontologies in biological and biomedical research: a functional perspective , 2015, Briefings Bioinform..

[101]  Christoph Steinbeck,et al.  Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology , 2013, BMC Genomics.

[102]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[103]  B. A. Pierce,et al.  Genetics: A Conceptual Approach , 2002 .

[104]  Axel Kowald,et al.  Systems Biology - a Textbook , 2016 .

[105]  R. Britton,et al.  Role of GTPases in bacterial ribosome assembly. , 2009, Annual review of microbiology.

[106]  A. Kaji,et al.  The ribosome-recycling step: consensus or controversy? , 2006, Trends in biochemical sciences.

[107]  James Taylor,et al.  Next-generation sequencing data interpretation: enhancing reproducibility and accessibility , 2012, Nature Reviews Genetics.

[108]  C. Yanofsky,et al.  Transcription attenuation: a highly conserved regulatory strategy used by bacteria. , 2005, Trends in genetics : TIG.

[109]  Vincent Fromion,et al.  A Stochastic Model of the Production of Multiple Proteins in Cells , 2014, SIAM J. Appl. Math..

[110]  R. Rauhut,et al.  mRNA degradation in bacteria. , 1999, FEMS microbiology reviews.

[111]  W. Houry,et al.  Direct binding targets of the stringent response alarmone (p)ppGpp , 2012, Molecular microbiology.

[112]  A. Rector,et al.  Relations in biomedical ontologies , 2005, Genome Biology.

[113]  B. Schwikowski,et al.  Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis , 2012, Science.

[114]  Torulf Mollestad,et al.  Additional Gene Ontology structure for improved biological reasoning , 2006, Bioinform..

[115]  M. Malecki,et al.  The critical role of RNA processing and degradation in the control of gene expression. , 2010, FEMS microbiology reviews.

[116]  P. Dehaseth,et al.  Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. , 2011, Journal of molecular biology.

[117]  Vincent J. Henry,et al.  OMICtools: an informative directory for multi-omic data analysis , 2014, Database J. Biol. Databases Curation.

[118]  M. Yusupov,et al.  One core, two shells: bacterial and eukaryotic ribosomes , 2012, Nature Structural &Molecular Biology.

[119]  J. Goodrich,et al.  An RNA transcriptional regulator templates its own regulatory RNA. , 2007, Nature chemical biology.

[120]  Joachim Frank,et al.  From DNA to proteins via the ribosome: Structural insights into the workings of the translation machinery , 2010, Human Genomics.

[121]  Joerg M. Buescher,et al.  Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism , 2012, Science.

[122]  M. Nomura,et al.  Assembly of bacterial ribosomes. , 1972, Federation proceedings.

[123]  Rolf Wagner,et al.  Regulation of transcription by 6S RNAs , 2014, RNA biology.

[124]  A. Gaca,et al.  Many Means to a Common End: the Intricacies of (p)ppGpp Metabolism and Its Control of Bacterial Homeostasis , 2015, Journal of bacteriology.