Mean Squared Error of Estimation or Prediction under a General Linear Model

Abstract The problem considered is that of predicting a linear combination of the fixed and random effects of a mixed-effects linear model. More generally, the problem considered is that of predicting an unobservable random variable from a set of observable random variables. The best linear-unbiased predictor depends on parameters which generally are unknown. Various exact or approximate expressions are given for the mean squared error (MSE) of the predictor obtained by replacing the unknown parameters with estimates. Several estimators of the MSE are investigated.

[1]  David A. Harville,et al.  Decomposition of Prediction Error , 1985 .

[2]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[3]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[4]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[5]  D. Harville,et al.  BLUP (Best Linear Unbiased Prediction) and Beyond , 1990 .

[6]  K. R. Shah,et al.  On the unbiased estimation of fixed effects in a mixed model for growth curves , 1981 .

[7]  A. F. M. Smith,et al.  Prediction and Improved Estimation in Linear Models , 1978 .

[8]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[9]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[10]  N. Cressie,et al.  Mean squared prediction error in the spatial linear model with estimated covariance parameters , 1992 .

[11]  P. R. Fisk,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1971 .

[12]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[13]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[14]  A. Goldberger Best Linear Unbiased Prediction in the Generalized Linear Regression Model , 1962 .

[15]  R. N. Kackar,et al.  Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models , 1984 .

[16]  D. Harville,et al.  Computational aspects of likelihood-based inference for variance components. , 1990 .

[17]  Daniel R. Jeske,et al.  Prediction-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models , 1988 .