Enhanced Thermoelectric Performance in Cu-Intercalated BiTeI by Compensation Weakening Induced Mobility Improvement

[1]  Jihui Yang,et al.  Conductivity-limiting bipolar thermal conductivity in semiconductors , 2015, Scientific Reports.

[2]  G. J. Snyder,et al.  Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band – a case study of thermoelectric PbSe , 2015 .

[3]  Shan Zheng,et al.  Complex doping of group 13 elements In and Ga in caged skutterudite CoSb3 , 2015 .

[4]  Lihua Wu,et al.  Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb , 2015 .

[5]  Jihui Yang,et al.  Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI , 2014 .

[6]  Lihua Wu,et al.  Thermopower enhancement in quantum wells with the Rashba effect , 2014 .

[7]  Jianping Long,et al.  Theoretical prediction of the fundamental properties of ternary bismuth tellurohalides , 2014 .

[8]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[9]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[10]  Lidong Chen,et al.  Electrical properties and microcosmic study on compound defects in Ga-containing thermoelectric skutterudites , 2014 .

[11]  Xinbing Zhao,et al.  High Performance Mg2(Si,Sn) Solid Solutions: a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties , 2014 .

[12]  L. Forró,et al.  Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method , 2014 .

[13]  Liangwei Fu,et al.  Enhancement of the Thermoelectric Performance of Polycrystalline In4Se2.5 by Copper Intercalation and Bromine Substitution , 2014 .

[14]  Han Li,et al.  Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances , 2013, Nanotechnology.

[15]  陈立东,et al.  Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites , 2013 .

[16]  G. Guo,et al.  Magnetotransport in copper-doped noncentrosymmetric BiTeI , 2013, 1307.1187.

[17]  Y Taguchi,et al.  Extremely high electron mobility in a phonon-glass semimetal. , 2013, Nature materials.

[18]  Alex K.-Y. Jen,et al.  Rational Design of Advanced Thermoelectric Materials , 2013 .

[19]  Jan König,et al.  Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity , 2013, Journal of Electronic Materials.

[20]  陈立东,et al.  Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity , 2013 .

[21]  D. Tanner,et al.  Quantum oscillations and optical conductivity in Rashba spin-splitting BiTeI , 2012, 1208.5523.

[22]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[23]  K. Bohnen,et al.  Lattice dynamics of bismuth tellurohalides , 2012 .

[24]  V. Kulbachinskii,et al.  On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI , 2012 .

[25]  Yi Cui,et al.  High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. , 2012, Journal of the American Chemical Society.

[26]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[27]  M. Chi,et al.  Atomic and electronic structures of the SrVO3-LaAlO3 interface , 2011 .

[28]  V. Kulbachinskii,et al.  Thermoelectric properties of BiTeI with addition of BiI3, CuI, and overstoichiometric Bi , 2011 .

[29]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[30]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[31]  R. Arita,et al.  Origin of giant bulk Rashba splitting: Application to BiTeI , 2011, 1105.2757.

[32]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[33]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[34]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[35]  M. Chi,et al.  Atomic and electronic structures of the SrVO 3 -LaAlO 3 interface , 2011 .

[36]  V. Kulbachinskii,et al.  Galvanomagnetic and thermoelectric properties of BiTeBr and BiTeI single crystals and their electronic structure , 2010 .

[37]  陈立东,et al.  Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure , 2010 .

[38]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[39]  Subba Ramaiah Kodigala Cu(In1−xGax)Se2 and CuIn(Se1−xSx)2 Thin Film Solar Cells , 2010 .

[40]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[41]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[42]  E. Cappelluti,et al.  Topological change of the Fermi surface in low-density Rashba gases: application to superconductivity. , 2006, Physical review letters.

[43]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[44]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[45]  Formation energies of lithium intercalations in AlSb, GaSb and InSb , 2003 .

[46]  Jiang,et al.  EELS analysis of cation valence states and oxygen vacancies in magnetic oxides , 2000, Micron.

[47]  F. G&miza,et al.  Influence of negatively and positively charged scattering centers on electron mobility in semiconductor inversion layers : A Monte Carlo study , 1999 .

[48]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[49]  B. A. Popovkin,et al.  Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data , 1995 .

[50]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[51]  J. Horák,et al.  Electrical conductivity of BiTeI crystals , 1981 .

[52]  J. W. Orton,et al.  REVIEW ARTICLE: The Hall effect in polycrystalline and powdered semiconductors , 1980 .

[53]  W. Walukiewicz,et al.  Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio , 1979 .

[54]  H. El-Ghanem Impurity Scattering in Semiconductors , 1979 .

[55]  J. Horák,et al.  Preparation and basic physical properties of BiTeI single crystals , 1978 .

[56]  Toshihiro Okada,et al.  Phase Diagram of System (Bi2Te3)-(BiI3)and Crystal Structure of BiTeI , 1977 .

[57]  J. Horák Propriétés optiques du semiconducteur BiTeI , 1970 .

[58]  P. W. Chapman,et al.  Electron Mobility in Semiconducting Strontium Titanate , 1967 .

[59]  A. C. Beer,et al.  The Hall effect and related phenomena , 1966 .

[60]  G. V. Chester,et al.  Solid State Physics , 2000 .

[61]  R. Casella Toroidal Energy Surfaces in Crystals with Wurtzite Symmetry , 1960 .

[62]  D. Long,et al.  Ionized-Impurity Scattering Mobility of Electrons in Silicon , 1959 .

[63]  E. Conwell,et al.  Electrical Properties of N -Type Germanium , 1954 .

[64]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .